CMSC 341

K-D Trees
K-D Tree

Introduction

- Multiple dimensional data
 - Range queries in databases of multiple keys:
 - Ex. find persons with
 \[34 \leq age \leq 49 \text{ and } $100k \leq \text{annual income} \leq $150k \]
 - GIS (geographic information system)
 - Computer graphics

- Extending BST from one dimensional to k-dimensional
 - It is a binary tree
 - Organized by levels (root is at level 0, its children level 1, etc.)
 - Tree branching at level 0 according to the first key, at level 1 according to the second key, etc.

KdNode

- Each node has a vector of keys, in addition to the pointers to its subtrees.
K-D Tree

A 2-D tree example
2-D Tree Operations

- **Insert**
 - A 2-D item (vector of size 2 for the two keys) is inserted
 - New node is inserted as a leaf
 - Different keys are compared at different levels

- **Find/print with an orthogonal (rectangular) range**

 - exact match: insert (low[level] = high[level] for all levels)
 - partial match: (query ranges are given to only some of the k keys, other keys can be thought in range $\pm \infty$)
2-D Tree Insertion

public void insert(Vector<T> x) {
 root = insert(x, root, 0);
}

// this code is specific for 2-D trees
private KdNode<T> insert(Vector<T> x, KdNode<T> t, int level) {
 if (t == null) {
 t = new KdNode(x);
 }

 int compareResult = x.get(level).compareTo(t.data.get(level));
 if (compareResult < 0) {
 t.left = insert(x, t.left, 1 - level);
 } else if (compareResult > 0) {
 t.right = insert(x, t.right, 1 - level);
 } else {
 // do nothing if equal
 }

 return t;
}
Insert (55, 62) into the following 2-D tree

55 > 53, move right

62 > 51, move right

55 < 99, move left

62 < 64, move left

Null pointer, attach
2-D Tree: printRange

/**
 * Print items satisfying
 * lowRange.get(0) <= x.get(0) <= highRange.get(0)
 * and
 * lowRange.get(1) <= x.get(1) <= highRange.get(1)
 */
public void printRange(Vector<T> lowRange,
 Vector<T> highRange)
{
 printRange(lowRange, highRange, root, 0);
}
2-D Tree: printRange (cont.)

private void
printRange(Vector <T> low, Vector <T> high,
KdNode<T> t, int level)
{
 if (t != null)
 {
 if ((low.get(0).compareTo(t.data.get(0)) <= 0 &&
 t.data.get(0).compareTo(high.get(0)) <=0)
 &&(low.get(1).compareTo(t.data.get(1)) <= 0 &&
 t.data.get(1).compareTo(high.get(1)) <= 0))
 System.out.println("(" + t.data.get(0) + "," +
 t.data.get(1) + ")");
 if (low.get(level).compareTo(t.data.get(level)) <= 0)
 printRange(low, high, t.left, 1 - level);
 if (high.get(level).compareTo(t.data.get(level)) >= 0)
 printRange(low, high, t.right, 1 - level);
 }
}
printRange in a 2-D Tree

In range? If so, print cell
low[level] <= data[level] -> search t.left
high[level] >= data[level] -> search t.right

low[0] = 35, high[0] = 40;

This sub-tree is never searched.
Searching is “preorder”. Efficiency is obtained by “pruning” subtrees from the search.
What property (or properties) do the nodes in the subtrees labeled A, B, C, and D have?
K-D Operations

- Modify the 2-D insert code so that it works for K-D trees.
- Modify the 2-D printRange code so that it works for K-D trees.
K-D Tree Performance

- **Insert**
 - Average and balanced trees: $O(\lg N)$
 - Worst case: $O(N)$

- **Print/search with a square range query**
 - Exact match: same as insert (low[level] = high[level] for all levels)
 - Range query: for M matches
 - Perfectly balanced tree:
 - K-D trees: $O(M + kN^{1 - 1/k})$
 - 2-D trees: $O(M + \sqrt{N})$
 - Partial match
 - in a random tree: $O(M + N^\alpha)$ where $\alpha = (-3 + \sqrt{17}) / 2$
K-D Tree Performance

- More on range query in a perfectly balanced 2-D tree:
 - Consider one boundary of the square (say, low[0])
 - Let $T(N)$ be the number of nodes to be looked at with respect to low[0]. For the current node, we may need to look at
 - One of the two children (e.g., node (27, 28), and
 - Two of the four grand children (e.g., nodes (30, 11) and (31, 85).
 - Write $T(N) = 2 T(N/4) + c$, where $N/4$ is the size of subtrees 2 levels down (we are dealing with a perfectly balanced tree here), and $c = 3$.
 - Solving this recurrence equation:
 $T(N) = 2T(N/4) + c = 2(2T(N/16) + c) + c$
 ...$= c(1 + 2 + \cdots + 2^{\log_4 N}) = 2^{\log_4 N} - 1$
 $= 2^2 2^{\log_4 N} - 1 = 2^{((\log_2 N)/2) - 1} = O(\sqrt{N})$
K-D Tree Remarks

- Remove
 - No good remove algorithm beyond lazy deletion
 (mark the node as removed)

- Balancing K-D Tree
 - No known strategy to guarantee a balanced 2-D tree
 - Periodic re-balance

- Extending 2-D tree algorithms to k-D
 - Cycle through the keys at each level