CMSC 341

Hashing
The Basic Problem

- We have lots of data to store.

- We desire efficient – $O(1)$ – performance for insertion, deletion and searching.

- Too much (wasted) memory is required if we use an array indexed by the data’s key.

- The solution is a “hash table”.
Hash Table

- Basic Idea
 - The hash table is an array of size ‘m’
 - The storage index for an item determined by a hash function \(h(k): U \rightarrow \{0, 1, \ldots, m-1\} \)

- Desired Properties of \(h(k) \)
 - easy to compute
 - uniform distribution of keys over \(\{0, 1, \ldots, m-1\} \)
 - when \(h(k_1) = h(k_2) \) for \(k_1, k_2 \in U \), we have a collision
Division Method

- The hash function:
 \[h(k) = k \mod m \text{ where } m \text{ is the table size.} \]
- \(m \) must be chosen to spread keys evenly.
 - Poor choice: \(m = \text{a power of 10} \)
 - Poor choice: \(m = 2^b, \ b > 1 \)
- A good choice of \(m \) is a prime number.
- Table should be no more than 80% full.
 - Choose \(m \) as smallest prime number greater than \(m_{\text{min}} \), where \(m_{\text{min}} = (\text{expected number of entries})/0.8 \)
Multiplication Method

- The hash function:
 \[h(k) = \lfloor m(kA - \lfloor kA \rfloor) \rfloor \]
 where \(A \) is some real positive constant.

- A very good choice of \(A \) is the inverse of the “golden ratio.”

- Given two positive numbers \(x \) and \(y \), the ratio \(x/y \) is the “golden ratio” if \(\phi = x/y = (x+y)/x \)

- The golden ratio:
 \[x^2 - xy - y^2 = 0 \Rightarrow \phi^2 - \phi - 1 = 0 \]
 \[\phi = (1 + \sqrt{5})/2 \approx 1.618033989… \]
 \[\sim= \text{Fib}_i/\text{Fib}_{i-1} \]
Because of the relationship of the golden ratio to Fibonacci numbers, this particular value of A in the multiplication method is called “Fibonacci hashing.”

Some values of

\[h(k) = \left\lfloor m(k \phi^{-1} - \left\lfloor k \phi^{-1} \right\rfloor) \right\rfloor \]

- for \(k = 0 \), \(h(k) = 0 \)
- for \(k = 1 \), \(h(k) = 0.618m \)
- for \(k = 2 \), \(h(k) = 0.236m \)
- for \(k = 3 \), \(h(k) = 0.854m \)
- for \(k = 4 \), \(h(k) = 0.472m \)
- for \(k = 5 \), \(h(k) = 0.090m \)
- for \(k = 6 \), \(h(k) = 0.708m \)
- for \(k = 7 \), \(h(k) = 0.326m \)
- ... for \(k = 32 \), \(h(k) = 0.777m \)
Fibonacci Hashing

![Graph of Fibonacci Hashing](image)
Non-integer Keys

- In order to have a non-integer key, must first convert to a positive integer:

 \[h(k) = g(f(k)) \] with \(f: U \rightarrow \text{integer} \)

 \[g: I \rightarrow \{0..m-1\} \]

- Suppose the keys are strings.

- How can we convert a string (or characters) into an integer value?
static int hash(String key, int tableSize) {
 int hashVal = 0;
 for (int i = 0; i < key.length(); i++)
 hashVal = 37 * hashVal + key.charAt(i);
 hashVal %= tableSize;
 if (hashVal < 0)
 hashVal += tableSize;
 return hashVal;
}
HashTable Class

public class SeparateChainingHashTable<AnyType>
{
 public SeparateChainingHashTable(){/* Later */}
 public SeparateChainingHashTable(int size){/*Later*/}
 public void insert(AnyType x){ /*Later*/ }
 public void remove(AnyType x){ /*Later*/}
 public boolean contains(AnyType x){/*Later */}
 public void makeEmpty(){ /* Later */}
 private static final int DEFAULT_TABLE_SIZE = 101;
 private List<AnyType> [] theLists;
 private int currentSize;
 private void rehash(){ /* Later */}
 private int myhash(AnyType x){ /* Later */}
 private static int nextPrime(int n){ /* Later */}
 private static boolean isPrime(int n){ /* Later */}
}
HashTable Ops

- boolean contains(AnyType x)
 - Returns true if x is present in the table.

- void insert (AnyType x)
 - If x already in table, do nothing.
 - Otherwise, insert it, using the appropriate hash function.

- void remove (AnyType x)
 - Remove the instance of x, if x is present.
 - Otherwise, does nothing

- void makeEmpty()
private int myhash(AnyType x) {
 int hashVal = x.hashCode();
 hashVal %= theLists.length;
 if(hashVal < 0)
 hashVal += theLists.length;
 return hashVal;
}
Handling Collisions

- Collisions are inevitable. How to handle them?

- Separate chaining hash tables
 - Store colliding items in a list.
 - If m is large enough, list lengths are small.

- Insertion of key k
 - $\text{hash}(k)$ to find the proper list.
 - If k is in that list, do nothing, else insert k on that list.

- Asymptotic performance
 - If always inserted at head of list, and no duplicates, $\text{insert} = O(1)$: best, worst, average
Hash Class for Separate Chaining

To implement separate chaining, the private data of the hash table is a vector (array) of Lists. The hash functions are written using List functions

```
private List<AnyType> [] theLists;
```
Performance of contains()

- contains
 - Hash k to find the proper list.
 - Call contains() on that list which returns a boolean.

- Performance
 - best:
 - worst:
 - average
Performance of remove()

- Remove k from table
 - Hash k to find proper list.
 - Remove k from list.
- Performance
 - best
 - worst
 - average
Handling Collisions Revisited

- **Probing hash tables**
 - All elements stored in the table itself (so table should be large. Rule of thumb: \(m \geq 2N \))
 - Upon collision, item is hashed to a new (open) slot.

Hash function

\[
h(k, i) = (h'(k) + f(i)) \mod m
\]

for some \(h' : U \rightarrow \{0, 1, \ldots, m-1\} \)

and some \(f(i) \) such that \(f(0) = 0 \)

- Each attempt to find an open slot (i.e. calculating \(h(k, i) \)) is called a **probe**
HashEntry Class for Probing Hash Tables

- In this case, the hash table is just an array

```java
private static class HashEntry<AnyType> {
    public AnyType element; // the element
    public boolean isActive; // false if deleted
    public HashEntry( AnyType e ) {
        this( e, true );
    }
    public HashEntry( AnyType e, boolean active ) {
        element = e; isActive = active;
    }
}
// The array of elements
private HashEntry<AnyType> [] array;
// The number of occupied cells
private int currentSize;
```
Linear Probing

- Use a linear function for $f(i)$
 \[f(i) = c \times i \]

- Example:
 \[h'(k) = k \mod 10 \] in a table of size 10, \[f(i) = i \]
 So that
 \[h(k, i) = (k \mod 10 + i) \mod 10 \]

Insert the values $U=\{89,18,49,58,69\}$ into the hash table.
Linear Probing (cont.)

- Problem: Clustering
 - When the table starts to fill up, performance $\rightarrow O(N)$

- Asymptotic Performance
 - Insertion and unsuccessful find, average
 - λ is the “load factor” – what fraction of the table is used
 - Number of probes $\approx \left(\frac{1}{2} \right) \left(1 + 1/(1-\lambda)^2 \right)$
 - if $\lambda \geq 1$, the denominator goes to zero and the number of probes goes to infinity
Remove

- Can’t just use the hash function(s) to find the object and remove it, because objects that were inserted after X were hashed based on X’s presence.
- Can just mark the cell as deleted so it won’t be found anymore.
 - Other elements still in right cells
 - Table can fill with lots of deleted junk
Quadratic Probing

- Use a quadratic function for $f(i)$
 \[f(i) = c_2 i^2 + c_1 i + c_0 \]
 The simplest quadratic function is $f(i) = i^2$

- Example:
 Let $f(i) = i^2$ and $m = 10$
 Let $h'(k) = k \mod 10$

 So that
 \[h(k, i) = (k \mod 10 + i^2) \mod 10 \]

 Insert the value $U=\{89, 18, 49, 58, 69\}$ into an initially empty hash table
Quadratic Probing (cont.)

- **Advantage:**
 - Reduced clustering problem

- **Disadvantages:**
 - Reduced number of sequences
 - No guarantee that empty slot will be found if $\lambda \geq 0.5$, even if m is prime
 - If m is not prime, may not find an empty slot even if $\lambda < 0.5$
Double Hashing

- Let $f(i) = i \times h_2(k)$

 Then $h(k, l) = \left(h'(k) + l \times h_2(k) \right) \mod m$

 And probes are performed at distances of $h_2(k), 2 \times h_2(k), 3 \times h_2(k), 4 \times h_2(k)$, etc

- Choosing $h_2(k)$
 - Don’t allow $h_2(k) = 0$ for any k.
 - A good choice: $h_2(k) = R - (k \mod R)$ with R a prime smaller than m

- Characteristics
 - No clustering problem
 - Requires a second hash function
Rehashing

- If the table gets too full, the running time of the basic operations starts to degrade.
- For hash tables with separate chaining, “too full” means more than one element per list (on average)
- For probing hash tables, “too full” is determined as an arbitrary value of the load factor.
- To rehash, make a copy of the hash table, double the table size, and insert all elements (from the copy) of the old table into the new table
- Rehashing is expensive, but occurs very infrequently.