CMSC 341

Disjoint Sets
Disjoint Set Definition

- Suppose we have an application involving N distinct items. We will not be adding new items, nor deleting any items. Our application requires us to partition the items into a collection of sets such that:
 - each item is in a set,
 - no item is in more than one set.

Examples

- UMBC students according to class rank.
- CMSC 341 students according to GPA.

The resulting sets are said to be disjoint sets.
Disjoint Set Terminology

- We identify a set by choosing a representative element of the set. It doesn’t matter which element we choose, but once chosen, it can’t change.

- There are two operations of interest:
 - find (x) -- determine which set x is in. The return value is the representative element of that set
 - union (x, y) -- make one set out of the sets containing x and y.

- Disjoint set algorithms are sometimes called union-find algorithms.
Disjoint Set Example

Given a set of cities, \(C \), and a set of roads, \(R \), that connect two cities \((x, y)\) determine if it’s possible to travel from any given city to another given city.

\[
\begin{align*}
\text{for (each city in } C) & \\
\text{put each city in its own set} & \\
\text{for (each road } (x,y) \text{ in } R) & \\
\text{if } \text{find}(x) \neq \text{find}(y) & \\
\text{union}(x, y) & \\
\end{align*}
\]

Now we can determine if it’s possible to travel by road between two cities \(c_1 \) and \(c_2 \) by testing

\[
\text{find}(c_1) == \text{find}(c_2)
\]
Up-Trees

- A simple data structure for implementing disjoint sets is the *up-tree*.

H, A and W belong to the same set. H is the representative.

X, B, R and F are in the same set. X is the representative.
Operations in Up-Trees

find() is easy. Just follow pointer to representative element. The representative has no parent.

```c
find(x)
{
    if (parent(x)) // not the representative
         return(find(parent(x));
    else
         return (x); // representative
}
```
Union

- Union is more complicated.

- Make one representative element point to the other, but which way? Does it matter?

- In the example, some elements are now twice as deep as they were before.
Union(H, X)

X points to H.
B, R and F are now deeper.

H points to X.
A and W are now deeper.
A Worse Case for Union

Union can be done in $O(1)$, but may cause find to become $O(n)$.

Consider the result of the following sequence of operations:

- Union (A, B)
- Union (C, A)
- Union (D, C)
- Union (E, D)
Array Representation of Up-tree

- Assume each element is associated with an integer \(i = 0 \ldots n-1 \). From now on, we deal only with \(i \).
- Create an integer array, \(s[n] \)
- An array entry is the element’s parent
- \(s[i] = -1 \) signifies that element \(i \) is the representative element.
Union/Find with an Array

Now the union algorithm might be:

```java
public void union(int root1, int root2) {
    s[root2] = root1; // attaches root2 to root1
}
```

The find algorithm would be

```java
public int find(int x) {
    if (s[x] < 0)
        return(x);
    else
        return(find(s[x]));
}
```
Improving Performance

- There are two heuristics that improve the performance of union-find.
 - Path compression on find
 - Union by weight
Path Compression

Each time we find() an element E, we make all elements on the path from E to the root be immediate children of root by making each element’s parent be the representative.

```java
public int find(int x) {
    if (s[x]<0)
        return(x);
    s[x] = find(s[x]);  // one new line of code
    return (s[x]);
}
```

When path compression is used, a sequence of m operations takes $O(m \log n)$ time. Amortized time is $O(\log n)$ per operation.
“Union by Weight” Heuristic

Always attach the smaller tree to larger tree.

```java
public void union(int root1, int root2) {
    rep_root1 = find(root1);
    rep_root2 = find(root2);
    if(weight[rep_root1] < weight[rep_root2]){
        s[rep_root1] = rep_root2;
        weight[rep_root2] += weight[rep_root1];
    }
    else {
        s[rep_root2] = rep_root1;
        weight[rep_root1] += weight[rep_root2];
    }
}
```
Performance with Union by Weight

- If unions are performed by weight, the depth of any element is never greater than \(\lg N \).

- Intuitive Proof:
 - Initially, every element is at depth zero.
 - An element’s depth only increases as a result of a union operation if it’s in the smaller tree in which case it is placed in a tree that becomes at least twice as large as before (union of two equal size trees).
 - Only \(\lg N \) such unions can be performed until all elements are in the same tree.

- Therefore, \(\text{find}(\) \) becomes \(\Theta(\lg n) \) when union by weight is used -- even without path compression.
When both optimizations are performed a sequence of \(m \) \((m \geq n)\) operations (unions and finds), takes no more than \(O(m \lg^* n) \) time.

- \(\lg^* n \) is the iterated (base 2) logarithm of \(n \) -- the number of times you take \(\lg n \) before \(n \) becomes \(\leq 1 \).

Union-find is essentially \(O(m) \) for a sequence of \(m \) operations (amortized \(O(1) \)).
A random maze generator can use union-find. Consider a 5x5 maze:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Maze Generator

- Initially, 25 cells, each isolated by walls from the others.
- This corresponds to an equivalence relation—two cells are equivalent if they can be reached from each other (walls been removed so there is a path from one to the other).
Maze Generator (cont.)

- To start, choose an entrance and an exit.

```
IN  →  OUT
```

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
Maze Generator (cont.)

- Randomly remove walls until the entrance and exit cells are in the same set.
- Removing a wall is the same as doing a union operation.
- Do not remove a randomly chosen wall if the cells it separates are already in the same set.
MakeMaze

MakeMaze(int size) {
 entrance = 0; exit = size-1;
 while (find(entrance) != find(exit)) {
 cell1 = a randomly chosen cell
 cell2 = a randomly chosen adjacent cell
 if (find(cell1) != find(cell2)) {
 union(cell1, cell2)
 }
 }
}
Initial State

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16} {17} {18} {19} {20} {21} {22} {23} {24}
Algorithm selects wall between 8 and 13. What happens?

{0, 1} {2} {3} {4, 6, 7, 8, 9, 13, 14} {5} {10, 11, 15} {12} {16, 17, 18, 22} {19} {20} {21} {23} {24}
A Different Intermediate State

- Algorithm selects wall between 8 and 13. What happens?

{0, 1} {2} {3} {4, 6, 7, 8, 9, 13, 14, 16, 17, 18, 22} {5} {10, 11, 15} {12} {19} {20} {21} {23} {24}
Final State

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}