
CMSC 341

Java Packages, Classes, Variables,

Expressions, Flow Control, and

Exceptions

8/3/2007 UMBC CMSC 341 Java 2 2

Sun’s Naming Conventions

� Classes and Interfaces

StringBuffer, Integer, MyDate

� Identifiers for methods, fields, and variables

_name, getName, setName, isName,

birthDate

� Packages

java.lang, java.util, proj1

� Constants

PI, MAX_NUMBER

8/3/2007 UMBC CMSC 341 Java 2 3

Comments

� Java supports three types of comments.

� C style /* multi-liner comments */

� C++ style // one liner comments

� Javadoc

/**

This is an example of a javadoc comment. These

comments can be converted to part of the pages you
see in the API.

*/

8/3/2007 UMBC CMSC 341 Java 2 4

The final modifier

� Constants in Java are created using the final
modifier.

final int MAX = 9;

� Final may also be applied to methods in which case
it means the method can not be overridden in
subclasses.

� Final may also be applied to classes in which case it
means the class can not be extended or subclassed
as in the String class.

8/3/2007 UMBC CMSC 341 Java 2 5

Packages

� Only one package per file.

� Packages serve as a namespace in Java and

create a directory hierarchy when compiled.

� Classes are placed in a package using the

following syntax in the first line that is not a

comment.

package packagename;

package packagename.subpackagename;

8/3/2007 UMBC CMSC 341 Java 2 6

Packages (cont.)

� Classes in a package are compiled using the

–d option.

� On the following slide, you will find the

command to compile the code from the
Proj1/src directory to the Proj1/bin

directory.

8/3/2007 UMBC CMSC 341 Java 2 7

Packages (cont.)

� It is common practice to duplicate the

package directory hierarchy in a directory

named src and to compile to a directory

named bin.

javac –d ../bin proj1/gui/Example.java

Proj1

proj1

proj1

src

bin

gui

gui

Example.java

Example.class

The following command is run from the src directory:

8/3/2007 UMBC CMSC 341 Java 2 8

Packages (cont.)

� By default, all classes that do not contain a package
declaration are in the unnamed package.

� The fully qualified name of a class is the
packageName.ClassName.
java.lang.String

� To alleviate the burden of using the fully qualified
name of a class, people use an import statement
found before the class declaration.
import java.util.StringBuffer;

import java.util.*;

8/3/2007 UMBC CMSC 341 Java 2 9

Fields and Methods

� In Java you have fields and methods. A field
is like a data member in C++.

� Method is like a member method in C++.

� Every field and method has an access level.
The public, private, and protected keywords
have the same functionality as those in C++.
� public

� protected

� private

� (package)

8/3/2007 UMBC CMSC 341 Java 2 10

Access Control

public

protected

default

private

Modifier Same class
Same

package
Subclass Universe

8/3/2007 UMBC CMSC 341 Java 2 11

Access Control for Classes

� Classes may have either public or package

accessibility.

� Only one public class per file.

� Omitting the access modifier prior to class

keyword gives the class package

accessibility.

8/3/2007 UMBC CMSC 341 Java 2 12

Classes

� In Java, all classes at some point in their

inheritance hierarchy are subclasses of

java.lang.Object, therefore all objects have

some inherited, default implementation

before you begin to code them.

� String toString()

� boolean equals(Object o)

8/3/2007 UMBC CMSC 341 Java 2 13

Classes (cont.)

� Unlike C++ you must define the accessibility

for every field and every method. In the

following code, the x is public but the y gets

the default accessibility of package since it

doesn’t have a modifier.

public

int x;

int y;

8/3/2007 UMBC CMSC 341 Java 2 14

Instance and Local Variables

� Unlike C++ you must define everything within
a class.

� Like C++,
� variables declared outside of method are instance

variables and store instance or object data. The
lifetime of the variable is the lifetime of the
instance.

� variables declared within a method, including the
parameter variables, are local variables. The
lifetime of the variable is the lifetime of the
method.

8/3/2007 UMBC CMSC 341 Java 2 15

Static Variables

� A class may also contain static variables and
methods.

� Similar to C++…
� Static variables store static or class data, meaning

only one copy of the data is shared by all objects
of the class.

� Static methods do not have access to instance
variables, but they do have access to static
variables.

� Instance methods also have access to static
variables.

8/3/2007 UMBC CMSC 341 Java 2 16

Instance vs. Static Methods

� Static methods

� have static as a modifier,

� can access static data,

� can be invoked by a host object or simply by using the

class name as a qualifier.

� Instance methods

� can access static data,

� can access instance data of the host object,

� must be invoked by a host object,

� contain a this reference that stores the address of host

object.

8/3/2007 UMBC CMSC 341 Java 2 17

Pass By Value or By Reference?

� All arguments are passed by value to a

method. However, since references are

addresses, in reality, they are passed by

reference, meaning…

� Arguments that contain primitive data are passed
by value. Changes to parameters in method do

not effect arguments.

� Arguments that contain reference data are passed
by reference. Changes to parameter in method

may effect arguments.

8/3/2007 UMBC CMSC 341 Java 2 18

Constructors

� Similar to C++, Java will provide a default (no

argument) constructor if one is not defined in

the class.

� Java, however, will initialize all fields (object

or instance data) to their zero values as in the

array objects.

� Like C++, once any constructor is defined,

the default constructor is lost unless explicitly

defined in the class.

8/3/2007 UMBC CMSC 341 Java 2 19

Constructors (cont.)

� Similar to C++, constructors in Java

� have no return value,

� have the same name as the class,

� initialize the data,

� and are typically overloaded.

� Unlike C++, a Java constructor can call

another constructor using a call to a this

method as the first line of code in the

constructor.

8/3/2007 UMBC CMSC 341 Java 2 20

Expressions and Control Flow

� Java uses the same operators as C++. Only
differences are
� + sign can be used for String concatenation,

� logical and relative operators return a boolean.

� Same control flow constructs as C++, but
expression must return a boolean.
� Conditional

� if(<boolean expression>){…}else if(<boolean
expression>){…}else{…}

� switch(variable){case 1: …break; default:…}

� Variable must be an integral primitive type of size int or smaller, or
a char

8/3/2007 UMBC CMSC 341 Java 2 21

Control Flow Constructs (cont.)

� Iterative

� while (<boolean expression>) { … }

� do { … } while (<boolean expression>);

� for(<initialize>; <boolean expression>;

<update>) { … }

� break and continue work in the same way as

in C++.

� May use labels with break and continue as in

C++.

8/3/2007 UMBC CMSC 341 Java 2 22

Control Flow Constructs (cont.)

� Enhanced for loop since Java 5 for iterating over arrays and collections.

public class EnhancedLoop

{

public static void main(String []a)

{

Integer [] array = {new Integer(5),6,7,8,9};

for (int element: array){

element+= 10;

System.out.println(element);

}

for (int element: array){

System.out.println(element);

}

}

}

element is a local variable

8/3/2007 UMBC CMSC 341 Java 2 23

Example Class

public class Person

{

// instance data

private String name;

private int age = 21;

private static int drivingAge = 16;

private static int num = 0;

//constructors

public Person(String name)

{

this.name = name;

num++;

}

public Person(String name, int age){

this(name);

this.age = age;

}

static num tracks the

number of Person objects

Call to previous constructor

C++ style comments

8/3/2007 UMBC CMSC 341 Java 2 24

Example Class (cont.)

//accessor and mutators

public String getName(){

return name;

}

public void setName(int name){

this.name = name;

}

public int getAge(){

return age;

}

public void setAge(int age){

this.age = age;

}

The this

reference is

used to

differentiate

between

local and

instance

data

8/3/2007 UMBC CMSC 341 Java 2 25

Example Class (cont.)

/* static accessor methods

The this reference does not

exist in static methods

*/

public static int getDrivingAge(){

return drivingAge;

}

public static int getNum(){

return num;

}

C style comments

8/3/2007 UMBC CMSC 341 Java 2 26

Example Class (cont.)

//overridden methods inherited from Object

public String toString(){

return “Person “ + name;

}

public boolean equals(Object o){

if(o == null)

return false;

if(getClass() != o.getClass())

return false;

Person p = (Person)o;

return this.age == p.age;

}

}

Testing if Object

is a Person

Casting Object

to a Person

End of class…

no semicolon

8/3/2007 UMBC CMSC 341 Java 2 27

Example Driver Program

public class PersonTest

{

public static void main(String args[])

{

Person p = new Person(“Sally”);

Person p2 = new Person(“Jane”);

Person p3 = new Person(“Mike”);

p3.setAge(25);

PersonTest.compare(p, p2);

compare(p2,p3);

}

public static void compare(Person p1, Person p2)

{

System.out.println(p1 + “ is “ +

(p1.equals(p2)? “”: “not”) +

“ the same age as “ + p2);

}

}

p

p2

p2

Sally

21

Mike

21

Jane

21

Mike

XX

25

p1

p2

8/3/2007 UMBC CMSC 341 Java 2 28

Exceptions

� Java handles exceptions like C++.
� Place try block around problem code and a catch block

immediately following try block to handle exceptions.

� Different from C++…
� Java uses a finally block for code that is to be executed

whether or not an exception is thrown.
� Java has a built-in inheritance hierarchy for its exception

classes which determines whether an exception is a
checked or an unchecked exception.

� You may declare that a method throws an exception to
handle it. The exception is then passed up the call stack.

� Java forces the programmer to handle a checked exception
at compile time.

8/3/2007 UMBC CMSC 341 Java 2 29

Exception Hierarchy

� Unchecked exceptions are derived from

RuntimeException. Checked exceptions are

derived from Exception. Error are also

unchecked exceptions, but may not derive

from it.
Throwable

ExceptionError

IOException RuntimeException

unchecked

unchecked

checked

checked

8/3/2007 UMBC CMSC 341 Java 2 30

Handling the Exception Example

public class HandleExample

{

public static void main(String args[])

{

try {

String name = args[0];

System.out.println(args[0]);

} catch (IndexOutOfBoundsException e){

System.out.println(“Please enter name ” +
“after java HandleExample”);

} finally {

System.out.println(“Prints no matter what”);

}

}

}

8/3/2007 UMBC CMSC 341 Java 2 31

Passing up the Exception

� In Java you may pass the handling of the exception
up the calling stack by declaring that the method
throws the exception using the keyword throws.

� This is necessary for compilation if you call a
method that throws a checked exception such as

the Thread.sleep method.

� The Java API lists the exceptions that a method

may throw. You may see the inheritance hierarchy
of an exception in the API to determine if it is

checked or unchecked.

8/3/2007 UMBC CMSC 341 Java 2 32

Passing up the Exception Example

public class PassUpExample

{

public static void main(String [] args){

System.out.println(“Hello”);

try

{

passback();

}catch(InterruptedException e)

{

System.out.println(“Caught InterruptedException”);

}

System.out.println(“Goodbye”);

}

public static void passback() throws InterruptedException

{

Thread.sleep(3000);

}

}

This method throws

a checked exception

This method passes

exception up call stack

main is obligated to handle

the exception since it is a

checked exception

