CMSC 341

K-D Trees
K-D Tree

- Introduction
 - Multiple dimensional data
 - Range queries in databases of multiple keys:
 Ex. find persons with
 \[34 \leq \text{age} \leq 49 \text{ and } 100k \leq \text{annual income} \leq 150k \]
 - GIS (geographic information system)
 - Computer graphics
 - Extending BST from one dimensional to k-dimensional
 - It is a binary tree
 - Organized by levels (root is at level 0, its children level 1, etc.)
 - Tree branching at level 0 according to the first key, at level 1 according to the second key, etc.

- KdNode
 - Each node has a vector of keys, in addition to the pointers to its subtrees.
K-D Tree

A 2-D tree example
2-D Tree Operations

- **Insert**
 - A 2-D item (vector of size 2 for the two keys) is inserted
 - New node is inserted as a leaf
 - Different keys are compared at different levels
- **Find/print with an orthogonal (rectangular) range**

```
  high[1]  key[1]
    
  low[1]  key[0]  high[0]
  low[0]
```

- exact match: insert (low[level] = high[level] for all levels)
- partial match: (query ranges are given to only some of the k keys, other keys can be thought in range $\pm \infty$)
2-D Tree Insertion

template <class Comparable>
void KdTree <Comparable>::insert(const vector<Comparable> &x)
{
 insert(x, root, 0);
}

// this code is specific for 2-D trees
template <class Comparable>
void KdTree <Comparable>::
insert(const vector<Comparable> &x, KdNode * & t, int level)
{
 if (t == NULL)
 t = new KdNode(x);
 else if (x[level] < t->data[level])
 insert(x, t->left, 1 - level);
 else
 insert(x, t->right, 1 - level);
}
Insert \((55, 62)\) into the following 2-D tree

Null pointer, attach

\(55, 62\) moves left
2-D Tree: PrintRange

/**
 * Print items satisfying
 * low[0] <= x[0] <= high[0] and
 */

template <class Comparable>
void KdTree <Comparable>::
PrintRange(const vector<Comparable> &low,
 const vector<Comparable> & high) const
{
 PrintRange(low, high, root, 0);
}
2-D Tree: PrintRange (cont’d)

template <class Comparable>
void KdTree <Comparable>::
PrintRange(const vector<Comparable> &low,
 const vector<Comparable> &high,
 KdNode * t, int level)
{
 if (t != NULL)
 {
 if ((low[0] <= t->data[0] && t->data[0] <= high[0])
 cout << "(" << t->data[0] << "," << t->data[1] << ")" << endl;
 if (low[level] <= t->data[level])
 PrintRange(low, high, t->left, 1 - level);
 if (high[level] >= t->data[level])
 PrintRange(low, high, t->right, 1 - level);
 }
}
In range? If so, print cell
Low[level] <= data[level] -> search t -> left
High[level] >= data[level] -> search t -> right

low[0] = 35, high[0] = 40;

This subtree is never searched

Searching is “preorder”. Efficiency is obtained by “pruning” subtrees from the search.
3-D Tree example

What property (or properties) do the nodes in the subtrees labeled A, B, C, and D have?
K-D Operations

- Modify the 2-D insert code so that it works for K-D trees.

- Modify the 2-D PrintRange code so that it works for K-D trees.
K-D Tree Performance

• Insert
 – Average and balanced trees: $O(lg N)$
 – Worst case: $O(N)$

• Print/search with a square range query
 – Exact match: same as insert (low[level] = high[level] for all levels)
 – Range query: for M matches
 • Perfectly balanced tree:
 K-D trees: $O(M + kN^{(1-1/k)})$
 2-D trees: $O(M + \sqrt{N})$
 • Partial match
 in a random tree: $O(M + N^\alpha)$ where $\alpha = (-3 + \sqrt{17}) / 2$
K-D Tree Performance

- More on range query in a perfectly balanced 2-D tree:
 - Consider one boundary of the square (say, low[0])
 - Let T(N) be the number of nodes to be looked at with respect to low[0]. For the current node, we may need to look at
 • One of the two children (e.g., node (27, 28), and
 • Two of the four grand children (e.g., nodes (30, 11) and (31, 85).
 - Write \(T(N) = 2 \cdot T(N/4) + c \), where \(N/4 \) is the size of subtrees 2 levels down (we are dealing with a perfectly balanced tree here), and \(c = 3 \).
 - Solving this recurrence equation:
 \[
 T(N) = 2T(N/4) + c = 2(2T(N/16) + c) + c
 \]
 \[
 \quad \quad \quad \quad \quad \quad \quad \quad \quad = c(1 + 2 + \cdots + 2^{\log_4 N}) = 2^{\log_4 N} + 1
 \]
 \[
 \quad \quad \quad \quad \quad \quad \quad \quad \quad = 2 \cdot 2^{\log_4 N} - 1 = 2^{((\log_2 N)/2)} - 1 = O(\sqrt{N})
 \]
K-D Tree Remarks

• Remove
 – No good remove algorithm beyond lazy deletion (mark the node as removed)
• Balancing K-D Tree
 – No known strategy to guarantee a balanced 2-D tree
 – Periodic re-balance
• Extending 2-D tree algorithms to k-D
 – Cycle through the keys at each level