Hashing

CMSC 341
The Basic Problem

• We have lots of data to store.

• We desire efficient – $O(1)$ – performance for insertion, deletion and searching.

• Too much (wasted) memory is required if we use an array indexed by the data’s key.

• The solution is a “hash table”.
Basic Idea
- The hash table is an array of size ‘m’
- The storage index for an item determined by a hash function $h(k): U \rightarrow \{0, 1, \ldots, m-1\}$

Desired Properties of $h(k)$
- easy to compute
- uniform distribution of keys over $\{0, 1, \ldots, m-1\}$
 - when $h(k_1) = h(k_2)$ for $k_1, k_2 \in U$, we have a collision
Division Method

The hash function:
\[h(k) = k \mod m \]
where \(m \) is the table size.

\(m \) must be chosen to spread keys evenly.
- Poor choice: \(m = \text{a power of 10} \)
- Poor choice: \(m = 2^b, \ b > 1 \)

A good choice of \(m \) is a prime number.

Also we want the table to be no more than 80% full.
- Choose \(m \) as smallest prime number greater than \(m_{\text{min}} \),
 where \(m_{\text{min}} = (\text{expected number of entries})/0.8 \)
Multiplication Method

The hash function

\[h(k) = \lfloor m(kA - \lfloor kA \rfloor) \rfloor \]

where \(A \) is some real positive constant.

A very good choice of \(A \) is the inverse of the “golden ratio.”

Given two positive numbers \(x \) and \(y \), the ratio \(x/y \) is the “golden ratio” if

\[\phi = \frac{x}{y} = \frac{x+y}{x} \]

The golden ratio:

\[x^2 - xy - y^2 = 0 \quad \Rightarrow \quad \phi^2 - \phi - 1 = 0 \]

\[\phi = \frac{1 + \sqrt{5}}{2} = 1.618033989 \ldots \]

\[\sim \frac{\text{Fib}_i}{\text{Fib}_{i-1}} \]
Multiplication Method (cont.)

Because of the relationship of the golden ratio to Fibonacci numbers, this particular value of A in the multiplication method is called “Fibonacci hashing.”

Some values of

\[h(k) = \lfloor m(k \phi^{-1} - \lfloor k \phi^{-1} \rfloor) \rfloor \]

- for \(k = 0 \)
 - \(= 0 \)
- for \(k = 1 \) \((\phi^{-1} = 1/ 1.618… = 0.618…)\)
 - \(= 0.618m \)
- for \(k = 2 \)
 - \(= 0.236m \)
- for \(k = 3 \)
 - \(= 0.854m \)
- for \(k = 4 \)
 - \(= 0.472m \)
- for \(k = 5 \)
 - \(= 0.090m \)
- for \(k = 6 \)
 - \(= 0.708m \)
- for \(k = 7 \)
 - \(= 0.326m \)
- \(= \ldots \)
- for \(k = 32 \)
 - \(= 0.777m \)
Fibonacci Hashing
Non-integer Keys

In order to have a non-integer key, must first convert to a positive integer:

\[h(k) = g(f(k)) \quad \text{with} \quad f: U \rightarrow \text{integer} \]

\[g: I \rightarrow \{0 .. m-1\} \]

Suppose the keys are strings.

How can we convert a string (or characters) into an integer value?
Horner’s Rule

int hash(const string &key, int tablesizex)
{
 int hashval = 0;

 // f(k) by Horner’s rule
 for (int i = 0; i < key.length(); i++)
 hashval = 37 * hashval + key[i];

 // g(k) by division method
 hashval %= tablesizex;
 if (hashval < 0) // overflow
 hashval += tablesizex;

 return hashval;
}
HashTable Class

template <typename HashedObj>
class HashTable {
 public:
 explicit HashTable(int size = 101);
 bool contains(const HashedObj& x) const;
 void makeEmpty();
 void insert (const HashedObj &x);
 void remove (const HashedObj &x);

 private:
 vector< xxxx > theTable; // more later
 int currentSize;
 void rehash();
 int myhash(const HashedObj& x) const;
 }
int hash (int key);
int hash (const string& key);
Hash Table Ops

bool contains(const HashedObj &x) const;
 – returns true if x is present in the table
void insert (const HashedObj &x);
 – if x already in table, do nothing.
 – otherwise insert it, using the appropriate hash function
void remove (const HashedObj &x);
 – remove the instance of x, if x is present
 – otherwise, does nothing
void makeEmpty();

3/22/2006
Hash Functions

```cpp
int myhash( const HashedObject& x ) const
{
    // call user-supplied overloaded hash function
    int hashVal = hash( x );
    hashVal %= theTable.size();
    if ( hashVal < 0 )
        hashVal += theTable.size();

    return hashVal;
}
```
Handling Collisions

Collisions are inevitable. How to handle them?

Separate chaining hash tables
 – store colliding items in a list
 – if m is large enough, list lengths are small

Insertion of key k
 – hash(k) to find the proper list
 – if k is in that list, do nothing. Else, insert k on that list.

Asymptotic performance
 – if always inserted at head of list, and no duplicates,
 insert = O(1): best, worst, average
Hash Class for Separate Chaining

To implement separate chaining, the private data of the hash table is a vector (array) of Lists. The hash functions are written using List functions

private:

 vector< List< HashObj > > theTable;
Performance of contains()

contains
- hash k to find the proper list
- Call contains() on that list which returns a boolean

Performance
- best:

- worst:

- average
Performance of remove()

Remove k from table
 – hash k to find proper list
 – remove k from list

Performance
 – best
 – worst
 – average
Handling Collisions Revisited

Probing hash tables

- all elements stored in the table itself (so table should be large. Rule of thumb: m >= 2N)
- upon collision, item is hashed to a new (open) slot.

Hash function

\[
 h: \mathbb{U} \times \{0,1,2,\ldots\} \rightarrow \{0,1,\ldots,m-1\}
\]

\[
 h(k, i) = (h'(k) + f(i)) \mod m
\]

for some \(h': \mathbb{U} \rightarrow \{0,1,\ldots,m-1\} \)

and some \(f(i) \) such that \(f(0) = 0 \)

Each attempt to find an open slot (i.e. calculating \(h(k, i) \)) is called a *probe*
Hash Class for Probing Hash Tables

In this case, the hash table is just an array
private:
 vector< HashedObj > theTable;

Which is allocated space in by the hash table constructor

HashTable(int size)
 : theTable(size)
{
 // other constructor code
}
Linear Probing

Use a linear function for \(f(i) \)

\[f(i) = c \times i \]

Example:

\[h'(k) = k \mod 10 \] in a table of size 10, \(f(i) = i \)

So that

\[h(k, i) = (k \mod 10 + i) \mod 10 \]

Insert the values \(U = \{89, 18, 49, 58, 69\} \) into the hash table
Linear Probing (cont’d)

Problem: Clustering
 – when the table starts to fill up, performance $\rightarrow O(N)$

Asymptotic Performance
 – insertion and unsuccessful find, average
 • λ is the “load factor” – what fraction of the table is used
 • Number of probes $\cong \left(\frac{1}{2} \right) \left(1 + 1/(1-\lambda)^2 \right)$
 • if $\lambda \cong 1$, the denominator goes to zero and the number of probes goes to infinity
Linear Probing (cont’d)

Remove

– Can’t just use the hash function(s) to find the object and remove it, because objects that were inserted after X were hashed based on X’s presence.

– Can just mark the cell as deleted so it won’t be found anymore.
 • Other elements still in right cells
 • Table can fill with lots of deleted junk
Quadratic Probing

Use a quadratic function for $f(i)$

$$f(i) = c_2i^2 + c_1i + c_0$$

The simplest quadratic function is $f(i) = i^2$

Example:

Let $f(i) = i^2$ and $m = 10$

Let $h'(k) = k \mod 10$

So that

$$h(k, i) = (k \mod 10 + i^2) \mod 10$$

Insert the value $U=\{89, 18, 49, 58, 69\}$ into an initially empty hash table
Quadratic Probing (cont.)

Advantage:
- reduced clustering problem

Disadvantages:
- reduced number of sequences
- no guarantee that empty slot will be found if $\lambda \geq 0.5$, even if m is prime
- If m is not prime, may not find an empty slot even if $\lambda < 0.5$
Double Hashing

Let \(f(i) \) use another hash function
\[
f(i) = i * h_2(k)
\]
Then \(h(k, l) = (h'(k) + * h_2(k)) \mod m \)
And probes are performed at distances of
\[
h_2(k), 2 * h_2(k), 3 * h_2(k), 4 * h_2(k), \text{ etc}
\]
Choosing \(h_2(k) \)
- don’t allow \(h_2(k) = 0 \) for any \(k \).
- a good choice:
 \[
 h_2(k) = R - (k \mod R) \text{ with } R \text{ a prime smaller than } m
 \]
Characteristics
- No clustering problem
- Requires a second hash function
Rehashing

If the table gets too full, the running time of the basic operations starts to degrade.

For hash tables with separate chaining, “too full” means more than one element per list (on average)

For probing hash tables, “too full” is determined as an arbitrary value of the load factor.

To rehash, make a copy of the hash table, double the table size, and insert all elements (from the copy) of the old table into the new table.

Rehashing is expensive, but occurs very infrequently.