CMSC 341

Introduction to Trees
Tree ADT

Tree definition

- A tree is a set of nodes.
- The set may be empty
- If not empty, then there is a distinguished node \(r \), called \textit{root} and zero or more non-empty subtrees \(T_1, T_2, \ldots T_k \), each of whose roots are connected by a directed edge from \(r \).

Basic Terminology

- \textit{Root} of a subtree is a child of \(r \). \(r \) is the \textit{parent}.
- All children of a given node are called \textit{siblings}.
- A \textit{leaf} (or external) node has no children.
- An \textit{internal node} is a node with one or more children
More Tree Terminology

A path from node V_1 to node V_k is a sequence of nodes such that V_i is the parent of V_{i+1} for $1 \leq i \leq k$.

The length of this path is the number of edges encountered. The length of the path is one less than the number of nodes on the path ($k - 1$ in this example).

The depth of any node in a tree is the length of the path from root to the node.

All nodes of the same depth are at the same level.

The depth of a tree is the depth of its deepest leaf.

The height of any node in a tree is the length of the longest path from the node to a leaf.

The height of a tree is the height of its root.

If there is a path from V_1 to V_2, then V_1 is an ancestor of V_2 and V_2 is a descendant of V_1.
Tree Storage

A tree node contains:

– Element
– Links
 • to each child
 • to sibling and first child
Binary Trees

A *binary tree* is a rooted tree in which no node can have more than two children AND the children are distinguished as *left* and *right*.

A *full BT* is a BT in which every node either has two children or is a leaf (every interior node has two children).
FBT Theorem

Theorem: A FBT with \(n \) internal nodes has \(n + 1 \) leaf nodes.
Proof by strong induction on the number of internal nodes, \(n \):

Base case: BT of one node (the root) has:
zero internal nodes
one external node (the root)

Inductive Assumption:
Assume all FBTs with up to and including \(n \) internal nodes have \(n + 1 \) external nodes.
Proof (cont)

Inductive Step (prove true for tree with \(n + 1 \) internal nodes)
(i.e a tree with \(n + 1 \) internal nodes has \((n + 1) + 1 = n + 2 \) leaves)

- Let \(T \) be a FBT of \(n \) internal nodes.
- It therefore has \(n + 1 \) external nodes (Inductive Assumption)
- Enlarge \(T \) so it has \(n+1 \) internal nodes by adding two nodes to some leaf. These new nodes are therefore leaf nodes.
- Number of leaf nodes increases by 2, but the former leaf becomes internal.
- So,
 - \# internal nodes becomes \(n + 1 \),
 - \# leaves becomes \((n + 1) + 1 = n + 2 \)
Proof (more rigorous)

Inductive Step (prove for $n+1$):

- Let T be any FBT with $n + 1$ internal nodes.
- Pick any leaf node of T, remove it and its sibling.
- Call the resulting tree T_1, which is a FBT.
- One of the internal nodes in T is changed to a external node in T_1

 - T has one more internal node than T_1
 - T has one more external node than T_1
- T_1 has n internal nodes and $n + 1$ external nodes (by inductive assumption)

 - Therefore T has $(n + 1) + 1$ external nodes.
Perfect Binary Tree

A *perfect* BT is a full BT in which all leaves have the same depth.
PBT Theorem

Theorem: The number of nodes in a PBT is $2^{h+1} - 1$, where h is height.

Proof by strong induction on h, the height of the PBT:

Notice that the number of nodes at each level is 2^l.

(Proof of this is a simple induction - left to student as exercise). Recall that the height of the root is 0.

Base Case:

The tree has one node; then $h = 0$ and $n = 1$.

and $2^{(h + 1)} = 2^{(0 + 1)} - 1 = 2^1 - 1 = 2 - 1 = 1 = n$
Proof of PBT Theorem (cont)

Inductive Assumption:
Assume true for all trees with height \(h \leq H \)

Prove true for tree with height \(H+1 \):

Consider a PBT with height \(H + 1 \). It consists of a root and two subtrees of height \(H \). Therefore, since the theorem is true for the subtrees (by the inductive assumption since they have height \(= H \))

\[
\begin{align*}
n &= (2^{(H+1)} - 1) \quad \text{for the left subtree} \\
 &= (2^{(H+1)} - 1) + (2^{(H+1)} - 1) \quad \text{for the right subtree} \\
 &= (2^{(H+1)} - 1) + 1 \quad \text{for the root} \\
 &= 2 * (2^{(H+1)} - 1) + 1 \\
 &= 2^{((H+1)+1)} - 2 + 1 = 2^{((H+1)+1)} - 1. \quad \text{QED}
\end{align*}
\]
Other Binary Trees

Complete Binary Tree

A complete BT is a perfect BT except that the lowest level may not be full. If not, it is filled from left to right.

Augmented Binary Tree

An augmented binary tree is a BT in which every unoccupied child position is filled by an additional “augmenting” node.
Path Lengths

The *internal path length* (IPL) of a rooted tree is the sum of the depths of all of its internal nodes.

The *external path length* (EPL) of a rooted tree is the sum of the depths of all the external nodes.

There is a relationship between the IPL and EPL of Full Binary Trees.

If n_i is the number of internal nodes in a FBT, then

$$EPL(n_i) = IPL(n_i) + 2n_i$$

Example:

$n_i =

EPL(n_i) =

IPL(n_i) =

2 \times n_i =$

10/10/2005
Proof of Path Lengths

Prove: $EPL(n_i) = IPL(n_i) + 2 \ n_i$ by induction on number of internal nodes

Base: $n_i = 0$ (single node, the root)

 $EPL(n_i) = 0$

 $IPL(n_i) = 0; \ 2 \ n_i = 0 \ 0 = 0 + 0$

IH: Assume true for all FBT with $n_i < N$

Prove for $n_i = N$.
Proof: Let T be a FBT with $n_i = N$ internal nodes.

Let n_{iL}, n_{iR} be # of internal nodes in L, R subtrees of T
then $N = n_i = n_{iL} + n_{iR} + 1 \implies n_{iL} < N; n_{iR} < N$

So by IH:
$$EPL(n_{iL}) = IPL(n_{iL}) + 2 \ n_{iL}$$
and $$EPL(n_{iR}) = IPL(n_{iR}) + 2 \ n_{iR}$$

For T,
$$EPL(n_i) = EPL(n_{iL}) + n_{iL} + 1 + EPL(n_{iR}) + n_{iR} + 1$$

By substitution
$$EPL(n_i) = IPL(n_{iL}) + 2 \ n_{iL} + n_{iL} + 1 + IPL(n_{iR}) + 2 \ n_{iR} + n_{iR} + 1$$

Notice that $IPL(n_i) = IPL(n_{iL}) + IPL(n_{iR}) + n_{iL} + n_{iR}$

By combining terms
$$EPL(n_i) = IPL(n_i) + 2 \ (n_{iR} + n_{iL} + 1)$$

But $n_{iR} + n_{iL} + 1 = n_i$, therefore
$$EPL(n_i) = IPL(n_i) + 2 \ n_i \quad \text{QED}$$
Traversal

Inorder

Preorder

Postorder

Levelorder
Constructing Trees

Is it possible to reconstruct a BT from just one of its pre-order, inorder, or post-order sequences?
Constructing Trees (cont)

Given two sequences (say pre-order and inorder) is the tree unique?
Tree Implementations

What should methods of a tree class be?
Tree class

template <class Object>
class Tree {

 public:
 Tree(const Object& notFnd);
 Tree (const Tree& rhs);
 ~Tree();

 const Object &find(const Object& x) const;
 bool isEmpty() const;
 void printTree() const;
 void makeEmpty();
 void insert (const Object& x);
 void remove (const Object& x);
 const Tree& operator=(const Tree &rhs);

};
Tree class (cont)

private:
 TreeNode<Object> *root;
 const Object ITEM_NOT_FOUND;
 const Object& elementAt(TreeNode<Object> *t) const;
 void insert (const Object& x, TreeNode<Object> *& t) const;
 void remove (const Object& x, TreeNode<Object> *& t) const;
 TreeNode<Object> *find(const Object& x,
 TreeNode<Object> * t) const;
 void makeEmpty(TreeNode<Object> *& t) const;
 void printTree(TreeNode<Object> * t) const;
 TreeNode<Object> * clone(TreeNode<Object> * t) const;
};
Tree Implementations

Fixed Binary
– element
– left pointer
– right pointer

Fixed K-ary
– element
– array of K child pointers

Linked Sibling/Child
– element
– firstChild pointer
– nextSibling pointer
TreeNode : Static Binary

template <class Object>
class BinaryNode {
 Object element;
 BinaryNode *left;
 BinaryNode *right;

 BinaryNode(const Object& theElement,
 BinaryNode* lt,
 BinaryNode* rt)
 : element (theElement), left(lt), right(rt) {}

 friend class Tree<Object>;
};
Find : Static Binary

template <class Object>
BinaryNode<Object> *Tree<Object> ::
find(const Object& x, BinaryNode<Object> * t) const {
 BinaryNode<Object> *ptr;

 if (t == NULL)
 return NULL;
 else if (x == t->element)
 return t;
 else if (ptr = find(x, t->left))
 return ptr;
 else
 return (ptr = find(x, t->right));
}
Counting Binary Tree Nodes

template< class T >
int Tree<T>::CountNodes (BinaryNode<T> *t)
{
 if (t == NULL)
 return 0;
 else
 return 1 + CountNode (t -> left) + CountNodes(t->right);
}
Other Recursive Binary Tree Functions

// determine if a Binary Tree is a FULL binary tree
bool IsFullTree(BinaryNode< T > * t);

// determine the height of a binary tree
int Height(BinaryNode< T > * t);

// many others
TreeNode : Static K-ary

template <class Object>
class KaryNode {
 Object element;
 KaryNode * children[MAXCHILDREN];

 KaryNode(const Object& theElement);

 friend class Tree<Object>;
};
Find : Static K-ary

template <class Object>
KaryNode<Object> *KaryTree<Object> ::
find(const Object& x, KaryNode<Object> *t) const
{
 KaryNode<Object> *ptr;

 if (t == NULL)
 return NULL;
 else if (x == t->element)
 return t;
 else {
 i =0;
 while (((i < MAX_CHILDREN)
 && !(ptr = find(x, t->children[i]))) i++;
 return ptr;
 }
}

10/10/2005
Insert: Static K-ary
Remove : Static K-ary
TreeNode : Sibling/Child

template <class Object>
class KTreeNode {
 Object element;
 KTreeNode *nextSibling;
 KTreeNode *firstChild;

 KTreeNode(const Object& theElement,
 KTreeNode *ns,
 KTreeNode *fc)
 : element (theElement), nextSibling(ns),
 firstChild(fc) {}

 friend class Tree<Object>;
};
Find : Sibling/Child

template <class Object>
KTreeNode<Object> *Tree<Object> ::
find(const Object& x, KTreeNode<Object> *t) const
{
 KTreeNode<Object> *ptr;

 if (t == NULL)
 return NULL;
 else if (x == t->element)
 return t;
 else if (ptr = find(x, t->firstChild))
 return ptr;
 else
 return (ptr = find(x, t->nextSibling));
}
Remove : Sibling/Parent