CMSC 341

K-D Trees
K-D Tree

• Introduction
 – Multiple dimensional data
 • Range queries in databases of multiple keys:
 Ex. find persons with
 \[34 \leq \text{age} \leq 49 \] and \[$100k \leq \text{annual income} \leq $150k \]
 • GIS (geographic information system)
 • Computer graphics
 – Extending BST from one dimensional to k-dimensional
 • It is a binary tree
 • Organized by levels (root is at level 0, its children level 1, etc.)
 • Tree branching at level 0 according to the first key, at level 1 according to the second key, etc.

• KdNode
 – Each node has a vector of keys, in addition to the two pointers to its left and right subtrees.
K-D Tree

A 2-D tree example
K-D Tree Operations

- **Insert**
 - A 2-D item (vector of size 2 for the two keys) is inserted
 - New node is inserted as a leaf
 - Different keys are compared at different levels

- **Find/print with an orthogonal (square) range**

 ![Diagram]

 - exact match: insert \((\text{low}[\text{level}] = \text{high}[\text{level}] \text{ for all levels})\)
 - partial match: (query ranges are given to only some of the \(k\) keys, other keys can be thought in range \(\pm \infty\))
K-D Tree Insertion

template <class Comparable>
void KdTree <Comparable>::insert(const vector<Comparable> &x)
{
 insert(x, root, 0);
}

template <class Comparable>
void KdTree <Comparable>::
insert(const vector<Comparable> &x, KdNode * & t, int level)
{
 if (t == NULL)
 t = new KdNode(x);
 else if (x[level] < t->data[level])
 insert(x, t->left, 1 - level);
 else
 insert(x, t->right, 1 - level);
}
Insert (55, 62) into the following 2-D tree
K-D Tree: PrintRange

/**
 * Print items satisfying
 * low[0] <= x[0] <= high[0] and
 */

template <class Comparable>
void KdTree <Comparable>::
PrintRange(const vector<Comparable> &low,
 const vector<Comparable> & high) const
{
 PrintRange(low, high, root, 0);
}
template <class Comparable>
void KdTree <Comparable>:::
PrintRange(const vector<Comparable> &low,
 const vector<Comparable> &high,
 KdNode * t, int level)
{
 if (t != NULL)
 {
 if (((low[0] <= t->data[0] && t->data[0] <= high[0])
 cout << "(" << t->data[0] << ","
 << t->data[1] << ")" << endl;
 if (low[level] <= t->data[level])
 PrintRange(low, high, t->left, 1 - level);
 if (high[level] >= t->data[level])
 PrintRange(low, high, t->right, 1 - level);
 }
}
printRange in a 2-D Tree

In range? If so, print cell

Low[level] <= data[level] -> search t->left
High[level] >= data[level] => search t->right

```
low[0] = 35, high[0] = 40;
```

This subtree is never searched

Searching is “preorder”. Efficiency is obtained by “pruning” subtrees from the search.
K-D Tree Performance

- Insert
 - Average and balanced trees: $O(lg \ N)$
 - Worst case: $O(N)$
- Print/search with a square range query
 - Exact match: same as insert (low[level] = high[level] for all levels)
 - Range query: for M matches
 - Perfectly balanced tree:
 - K-D trees: $O(M + kN^{(1-1/k)})$
 - 2-D trees: $O(M + \sqrt{N})$
 - Partial match
 - in a random tree: $O(M + N^\alpha)$ where $\alpha = (-3 + \sqrt{17}) / 2$
K-D Tree Performance

- More on range query in a perfectly balanced 2-D tree:
 - Consider one boundary of the square (say, low[0])
 - Let $T(N)$ be the number of nodes to be looked at with respect to low[0]. For the current node, we may need to look at
 - One of the two children (e.g., node $(27, 28)$, and
 - Two of the four grand children (e.g., nodes $(30, 11)$ and $(31, 85)$.
 - Write $T(N) = 2T(N/4) + c$, where $N/4$ is the size of subtrees 2 levels down (we are dealing with a perfectly balanced tree here), and $c = 3$.
 - Solving this recurrence equation:
 $T(N) = 2T(N/4) + c = 2(2T(N/16) + c) + c$
 $= c(1 + 2 + \ldots + 2^{\log_4 N}) = 2^{\log_4 N + 1} - 1$
 $= 2\times2^{\log_4 N} - 1 = 2^{\log_2 N/2} - 1 = O(\sqrt{N})$
K-D Tree Remarks

• Remove
 – No good remove algorithm beyond lazy deletion
 (mark the node as removed)

• Balancing K-D Tree
 – No known strategy to guarantee a balanced 2-D tree
 – Tree rotation does not work here
 – Periodic re-balance

• Extending 2-D tree algorithms to k-D
 – Cycle through the keys at each level