Red-Black Trees

Bottom-Up Deletion
Recall “ordinary” BST Delete

1. If vertex to be deleted is a leaf, just delete it.
2. If vertex to be deleted has just one child, replace it with that child
3. If vertex to be deleted has two children, replace the \textit{value} in the node by its in-order predecessor/successor’s value then delete the in-order predecessor/successor (a recursive step)
Bottom-Up Deletion

1. Do ordinary BST deletion. Eventually a “case 1” or “case 2” deletion will be done (leaf or just one child).
 -- If deleted node, U, is a leaf, think of deletion as replacing U with the NULL pointer, V.
 -- If U had one child, V, think of deletion as replacing U with V.

2. What can go wrong??
Which RB Property may be violated after deletion?

1. If U is red?

 Not a problem – no RB properties violated

2. If U is black?

 If U is not the root, deleting it will change the black-height along some path
Fixing the problem

• Think of V as having an “extra” unit of blackness. This extra blackness must be absorbed into the tree (by a red node), or propagated up to the root and out of the tree.

• There are four cases – our examples and “rules” assume that V is a left child. There are symmetric cases for V as a right child
Terminology

- The node just deleted was U
- The node that replaces it is V, which has an extra unit of blackness
- The parent of V is P
- The sibling of V is S

![Black Node](image)

![Red or Black and don’t care](image)

![Red Node](image)
Bottom-Up Deletion
Case 1

• V’s sibling, S, is Red
 – Rotate S around P and recolor S & P
• NOT a terminal case – One of the other cases will now apply
• All other cases apply when S is Black
Case 1 Diagram

Rotate

Recolor
Bottom-Up Deletion
Case 2

• V’s sibling, S, is black and has two black children.
 – Recolor S to be Red
 – P absorbs V’s extra blackness
 • If P is Red, we’re done
 • If P is Black, it now has extra blackness and problem has been propagated up the tree
Either extra black absorbed by P or P now has extra blackness.
Bottom-Up Deletion

Case 3

- S is black
- S’s RIGHT child is RED (Left child either color)
 - Rotate S around P
 - Swap colors of S and P, and color S’s Right child Black

- This is the terminal case – we’re done
Case 3 diagrams

V+ → Rotate → V

P → Recolor → P

S →
Bottom-Up Deletion
Case 4

• S is Black, S’s right child is Black and S’s left child is Red
 – Rotate S’s left child around S
 – Swap color of S and S’s left child
 – Now in case 3
Case 4 Diagrams

Rotate

V+ S

P

Recolor

V+ S

P

V+

S

P

S
Perform the following deletions, in the order specified:
Delete 90, Delete 80, Delete 70