Red-Black Trees
Red-Black Trees

• Definition: A red-black tree is a binary search tree where:
 – Every node is either red or black.
 – Each NULL pointer is considered to be a black “node”
 – If a node is red, then both of its children are black.
 – Every path from a node to a NULL contains the same number of black nodes.
 – The root is black

• Definition: The black-height of a node, X, in a red-black tree is the number of black nodes on any path to a NULL, not counting X.
A Red-Black Tree with NULLs shown

Black-Height of the tree = 4
A valid Red-Black Tree

Black-Height = 2
Theorem 1 – Any red-black tree with root \(x \),
has \(n \geq 2^{bh(x)} - 1 \) nodes, where \(bh(x) \) is the
black height of node \(x \).
Proof: by induction on height of \(x \).
Theorem 2 – In a red-black tree, at least half the nodes on any path from the root to a NULL must be black.

Proof – If there is a red node on the path, there must be a corresponding black node.

Algebraically this theorem means

\[bh(x) \geq h/2 \]
Theorem 3 – In a red-black tree, no path from any node, N, to a NULL is more than twice as long as any other path from N to any other NULL.

Proof: By definition, every path from a node to any NULL contains the same number of black nodes. By Theorem 2, at least the nodes on any such path are black. Therefore, there can no more than twice as many nodes on any path from N to a NULL as on any other path. Therefore the length of every path is no more than twice as long as any other path
Theorem 4 –
A red-black tree with \(n \) nodes has height
\[
h \leq 2 \, \lg(n + 1).
\]
Proof: Let \(h \) be the height of the red-black tree with root \(x \). By Theorem 2,
\[
bh(x) \geq h/2
\]
From Theorem 1, \(n \geq 2^{bh(x)} - 1 \)
Therefore \(n \geq 2^{h/2} - 1 \)
\[
n + 1 \geq 2^{h/2}
\]
\[
\lg(n + 1) \geq h/2
\]
\[
2\lg(n + 1) \geq h
\]
Bottom –Up Insertion

• Insert node as usual in BST
• Color the Node RED
• What Red-Black property \textit{may} be violated?
 – Every node is Red or Black
 – NULLs are Black
 – If node is Red, both children must be Black
 – Every path from node to descendant NULL must contain the same number of Blacks
Bottom Up Insertion

• Insert node; Color it RED; X is pointer to it

• Cases

 0: X is the root -- color it black

 1: Both parent and uncle are red -- color parent and uncle black, color grandparent red, point X to grandparent, check new situation

 2 (zig-zag): Parent is red, but uncle is black. X and its parent are opposite type children -- color grandparent red, color X black, rotate left(right) on parent, rotate right(left) on grandparent

 3 (zig-zig): Parent is red, but uncle is black. X and its parent are both left (right) children -- color parent black, color grandparent red, rotate right(left) on grandparent
Case 1 – U is Red
Just Recolor and move up
Case 2 – Zig-Zag

Double Rotate
 X around P; X around G

Recolor G and X
Case 3 – Zig-Zig
Single Rotate P around G
Recolor P and G
Insert 4 into this R-B Tree

Black node

Red node
Insertion Practice

Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an initially empty Red-Black Tree
Asymptotic Cost of Insertion

- $O(lg\ n)$ to descend to insertion point
- $O(1)$ to do insertion
- $O(lg\ n)$ to ascend and readjust == worst case only for case 1

- Total: $O(log\ n)$