Announcements

Expect graded exams on Wed
Truncated office hours today (until 1:30)
Proj5 up today, example solution later
Constructing a Binary Heap

A BH can be constructed in $O(n)$ time.

Suppose an array in arbitrary order. It can be put in heap order in $O(n)$ time.

- Create the array and store n elements in it in arbitrary order. $O(n)$
- Heapify the array
 - start at vertex $i = \lfloor n/2 \rfloor$
 - percolateDown(i)
 - repeat for all vertices down to i

```cpp
template <class Comparable>
void BinaryHeap<Comparable>::buildHeap() {
    for(int i = currentSize/2; i > 0; i--)
        percolateDown(i);
}
```
Performance of Construction

A CBT has 2^{h-1} vertices on level $h-1$.
On level $h-1$, at most 1 swap is needed per node.
On level $h-2$, at most 2 swaps are needed.

...

On level 0, at most h swaps are needed.

Number of swaps = S

$$= 2^h*0 + 2^{h-1}*1 + 2^{h-2}*2 + \ldots + 2^0*0$$

$$= \sum_{i=0}^{h} 2^i (h - i) = h \sum_{i=0}^{h} 2^i - \sum_{i=0}^{h} i 2^i$$

$$= h(2^{h+1}-1) - ((h-1)2^{h+1}+2)$$

$$= 2^{h+1}(h-(h-1))-h-2$$

$$= 2^{h+1}-h-2$$

Performance of Construction (cont)

But $2^{h+1}-h-2 = O(2^h)$

But $n = 1 + 2 + 4 + \ldots + 2^h = \sum_{i=0}^{h} 2^i$

Therefore, $n = O(2^h)$

So $S = O(n)$

A heap of n vertices can be built in $O(n)$ time.
Heap Sort

Given n values, can sort in $O(n \log n)$ time (in place).

- Insert values into array -- $O(n)$
- heapify -- $O(n)$
- repeatedly delete min -- $O(\log n)$ n times

Using a min heap, this code sorts in reverse order. With a max heap, it sorts in normal order.

```c
for (i = n-1; i >= 1; i--) {
    x = findMin();
    deleteMin();
    A[i+1] = x;
}
```

Limitations

Binary heaps support insert, findMin, deleteMin, and construct efficiently.

They do not efficiently support the meld or merge operation in which 2 PQs are merged into one. If P_1 and P_2 are of size n_1 and n_2, then the merge is in $O(n_1 + n_2)$.
Leftist Heap

Supports
- `findMin` -- $O(1)$
- `deleteMin` -- $O(lg\ n)$
- `insert` -- $O(lg\ n)$
- `construct` -- $O(n)$
- `merge` -- $O(lg\ n)$

Leftist Tree

A LT is a binary tree in which at each vertex v, the path length, d_r, from v’s right child to the nearest non-full vertex is not larger than that from the vertex’s left child to the nearest non-full vertex.

An important property of leftist trees:
- At every vertex, the shortest path to a non-full vertex is along the rightmost path.
- Suppose this was not true. Then, at the same vertex the path on the left would be shorter than the path on the right.
Leftist Heap

A leftist heap is a leftist tree in which the values in the vertices obey heap order (the tree is partially ordered). Since a LH is not necessarily a CBT we do not implement it in an array. An explicit tree implementation is used.

Operations
- findMin -- return root value, same as BH
- deleteMin -- done using meld operation
- insert -- done using meld operation
- construct -- done using meld operation

Meld

Algorithm:

Meld (H1, H2) {
 if (!root(H1) || (root_value(H1) > root_value(H2))
 swap (H1, H2)
 if (root(H1) != NULL))
 right(H1) <-- Meld(right(H1),H2)
 if (left_length(H1) < right_length(H1)
 swap(left(H1), right(H1));
}
Meld (cont)

Performance: $O(\lg n)$

- the rightmost path of each tree has at most $\lfloor \lg(n+1) \rfloor$ vertices. So $O(\lg n)$ vertices will be involved.
Leftist Heap Operations

Other operations implemented in terms of Meld

- insert (item)
 - make item into a 1-vertex LH, X
 - Meld(*this, X)
- deleteMin
 - Meld(left subtree, right subtree)
- construct from N items
 - make N LH from the N values, one element in each
 - meld each in
 - one at a time :
 - use queue and build pairwise :

LH Construct

Algorithm:
- make N heaps each with one data value
- Queue Q;
- for (I=1; I <= N; I++)
 Q.Enqueue(Hi);
- Heap H = Q.Dequeue();
- while (!Q.IsEmpty())
 Q.Enqueue(meld(H,Q.Dequeue()));
 H = Q.Dequeue();