CMSC 341
Lecture 4

Announcements

Example

Code:

```
sum1 = 0;
for (k=1; k<=n; k*=2)
        for (j=1; j<=n; j++)
            sum1++;
```

Complexity:
Code:

```
sum2 = 0;
for (k=1; k<=n; k*=2)
    for (j=1; j<=k; j++)
        sum2++;
```

Complexity:

Some Questions

1. Is upper bound the same as worst case?
2. Does lower bound happen with shortest input?
3. What if there are multiple parameters?

Ex: Rank order of p pixels in c colors
for (i $=0$; $i<c ; i++$) count[I] = 0;
for (i = 0; i $<~ p ; ~ i++)$ count[value(i)]++;
sort (count)

Space Complexity

Does it matter?

What determines space complexity?

How can you reduce it?

What tradeoffs are involved?

Constants in Bounds

Theorem:
$\mathrm{O}(\mathrm{cf}(\mathrm{x})=\mathrm{O}(\mathrm{f}(\mathrm{x}))$
Proof:
$-\mathrm{T}(\mathrm{x})=\mathrm{O}(\mathrm{cf}(\mathrm{x}))$ implies that there are constants c_{0} and n_{0} such that $\mathrm{T}(\mathrm{x}) \leq \mathrm{c}_{0}(\operatorname{cf}(\mathrm{x}))$ when $\mathrm{x} \geq \mathrm{n}_{0}$

- Therefore, $\mathrm{T}(\mathrm{x}) \leq \mathrm{c}_{1}(\mathrm{f}(\mathrm{x}))$ when $\mathrm{x} \geq \mathrm{n}_{0}$ where $\mathrm{c}_{1}=\mathrm{c}_{0} \mathrm{c}$
- Therefore, $\mathrm{T}(\mathrm{x})=\mathrm{O}(\mathrm{f}(\mathrm{x}))$

Sum in Bounds

Theorem:
Let $T_{1}(n)=O\left(f(n)\right.$ and $T_{2}(n)=O(g(n))$.
Then $T_{1}(n)+T_{2}(n)=O(\max (f(n), g(n))$.
Proof:

- From the definition of $O, T_{1}(n) \leq c_{1} f(n)$ for $n \geq n_{1}$ and $\mathrm{T}_{2}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{2}$
- Let $n_{0}=\max \left(n_{1}, n_{2}\right)$.
- Then, for $\mathrm{n} \geq \mathrm{n}_{0}, \mathrm{~T}_{1}(\mathrm{n})+\mathrm{T}_{2}(\mathrm{n}) \leq \mathrm{c}_{1} \mathrm{f}(\mathrm{n})+\mathrm{c}_{2} \mathrm{~g}(\mathrm{n})$
- Let $c_{3}=\max \left(c_{1}, c_{2}\right)$.
- Then, $T_{1}(n)+T_{2}(n) \leq c_{3} f(n)+c_{3} g(n)$

$$
\begin{aligned}
& \leq 2 \mathrm{c}_{3} \max (\mathrm{f}(\mathrm{n}), \mathrm{g}(\mathrm{n})) \\
& \leq \mathrm{c} \max (\mathrm{f}(\mathrm{n}), \mathrm{g}(\mathrm{n}))
\end{aligned}
$$

Products in Bounds

Theorem:
Let $T_{1}(n)=O\left(f(n)\right.$ and $T_{2}(n)=O(g(n))$.
Then $T_{1}(n) T_{2}(n)=O(f(n), g(n))$.
Proof:
$-T_{1}(n) T_{2}(n) \leq c_{1} c_{2} f(n) g(n)$ when $n \geq n_{0}$

- Therefore, $T_{1}(n) T_{2}(n)=O(f(n), g(n))$.

Polynomials in Bounds

Theorem:
If $T(n)$ is a polynomial of degree x, then $T(n)=O\left(n^{x}\right)$.

Proof:

- By the sum rule, the largest term dominates.
- Therefore, $T(n)=O\left(n^{x}\right)$.

L'Hospital's Rule

Finding limit of ratio of functions as variable approaches ∞

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Use to determine O or Ω ordering of two functions

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}=\mathrm{O}(\mathrm{~g}(\mathrm{x})) \text { if } \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0\right. \\
& \mathrm{f}(\mathrm{x})=\Omega(\mathrm{g}(\mathrm{x})) \text { if } \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0
\end{aligned}
$$

Polynomials of Logarithms in Bounds

Theorem:
$\lg ^{x} \mathrm{n}=\mathrm{O}(\mathrm{n})$ for any positive constant k
Proof:

- Note that $\lg ^{k} n$ means $(\lg n)^{k}$.
- Need to show $\lg ^{\mathrm{k}} \mathrm{n} \leq \mathrm{cn}$ for $\mathrm{n} \geq \mathrm{n}_{0}$. Equivalently, can show $\lg \mathrm{n} \leq \mathrm{cn}^{1 / \mathrm{k}}$
- Letting $\mathrm{a}=1 / \mathrm{k}$, we will show that $\lg \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{\mathrm{a}}\right)$ for any positive constant a. Use L'Hospital's rule:

$$
\lim _{n \rightarrow \infty} \frac{\lg n}{c n^{a}}=\lim _{n \rightarrow \infty} \frac{\frac{\lg e}{n}}{a c n^{a-1}}=\lim _{n \rightarrow \infty} \frac{c_{2}}{n^{a}}=0
$$

Ex: $\lg ^{1000000}(\mathrm{n})=\mathrm{O}(\mathrm{n})$

Polynomials vs Exponentials in Bounds

Theorem:

$$
\mathrm{n}^{\mathrm{k}}=\mathrm{O}\left(\mathrm{a}^{\mathrm{n}}\right) \text { for } \mathrm{a}>1
$$

Proof:

- Use L'Hospital's rule

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n^{k}}{a^{n}} & =\lim _{n \rightarrow \infty} \frac{k n^{k-1}}{a^{n} \ln a} \\
& =\lim _{n \rightarrow \infty} \frac{k(k-1) n^{k-2}}{a^{n} \ln ^{2} a} \\
& =\ldots \\
& =\lim _{n \rightarrow \infty} \frac{k(k-1) \ldots 1}{a^{n} \ln ^{k} a} \\
& =0
\end{aligned}
$$

$E x: n^{1000000}=O\left(1.00000001^{n}\right)$

Relative Orders of Growth

n (linear)
$\log ^{\mathrm{k}} \mathrm{n}$ for $\mathrm{k}<1$
constant
$\mathrm{n}^{1+\mathrm{k}}$ for $\mathrm{k}>0$ (polynomial)
2^{n} (exponential)
$\mathrm{n} \log \mathrm{n}$
$\log ^{\mathrm{k}} \mathrm{n}$ for $\mathrm{k}>1$
n^{k} for $\mathrm{k}<1$
$\log n$

Relative Orders of Growth

$$
\begin{aligned}
& \text { constant } \\
& \log ^{\mathrm{k}} \mathrm{n} \text { for } \mathrm{k}>1 \\
& \log \mathrm{n} \\
& \mathrm{n}^{\mathrm{k}} \text { for } \mathrm{k}<1 \\
& \mathrm{n} \text { (linear) } \\
& \mathrm{n} \log \mathrm{n} \\
& \mathrm{n}^{1+\mathrm{k}} \text { for } \mathrm{k}>0 \text { (polynomial) } \\
& 2^{\mathrm{n}} \text { (exponential) }
\end{aligned}
$$

List ADT (expanded from Weiss)

A list is a dynamic ordered tuple of homogeneous elements $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots, \mathrm{~A}_{\mathrm{N}}$
where A_{i} is the ith element of the list

Definition: The position of element A_{i} is i ; positions range from 1 to N inclusive

Definition: The size of a list is N (a list of NO elements is called "an empty list")

Operations on a List

List() -- construct an empty list
List(const List \&rhs) -- construct a list as a copy of rhs
$\sim \operatorname{List}()$-- destroy the list
const List \&operator=(const List \&rhs)

- make this list contain copies of the elements of rhs in the same order
- elements are deep copied from rhs, not used directly. If $\mathrm{L}_{1}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right)$ and $\mathrm{L}_{2}=\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$ before the assignment, then $L_{1}=L_{2}$ causes $L_{2}=\left(A_{1}, A_{2}, A_{3}\right)$

Operations on a List (cont)

Bool isEmpty() const -- returns true if the list size is zero void makeEmpty() -- causes the list to become empty void remove (const Object \&x)

- the first occurrence of x is removed from the list, if it is present. If x is not present, the list is unchanged.
- an occurrence of x is an element A_{i} of the list such that $\mathrm{A}_{\mathrm{i}}=\mathrm{x}$
Also:
insert
find
findPrevious

Iterators

An iterator is an object that provides access to the elements of a collection (in a specified order) without exposing the underlying structure of the collection.

- order dictated by the iterator
- collection provides iterators on demand
- each iterator on a collection is independent
- iterator operations are generic

Iterator Operations

Bool isPastEnd() -- returns true if the iterator is past the end of the list
void advance() -- advances the iterator to the next position in the list. If iterator already past the end, no change.
const Object \&retrieve() -- returns the element in the list at the current position of the iterator. It is an error to invoke "retrieve" on an iterator that isPastEnd

List Operations

ListIter<Object> first() -- returns an iterator representing the first element on the list

List Iter<Object> zeroth() -- returns an iterator representing the header of a list

ListIter<Object> find(const Object \&x) -- returns an iterator representing the first occurrence of x in the list. If x not present, the iterator isPastEnd.

ListIter<Object> findPrevious(const Object \&x) -- returns an iterator representing the element before x in the list. If x is not in the list, the iterator represents the last element in the list. If x is first element (or list is empty), the iterator returned is equal to the one returned by zeroth().

List Operators (cont)

void insert (const Object \&x, const listIter<Object> \& p)

- inserts a copy of x in the list after the element referred to by p
- if p isPastEnd, the insertion fails without an indication of failure.

Ex: Building a List

```
List<int> list; // empty list of int
ListIter<int> iter = list.zeroth();
for (int i=0; i < 5; i++) {
    list.insert(iter);
    iter.advance();
    }
```


Ex: Building a List \#2

List<int> list; // empty list of int
ListIter<int> iter = list. zeroth();
for (int $i=0 ; i<5 ; i++$) $\{$
list.insert(iter);
\}

Ex:

