CMSC 341
Lecture 21

Announcements

Clarifications on website for Proj5
Project Preview tonight and tomorrow
 Proj5 discussion
 dbx overview and tips
Dijkstra’s Algorithm

Vertex v, w;
start.dist = 0;
for (;;) {
 v = smallest unknown distance vertex;
 if (v == NOT_A_VERTEX) break;
 v.known = TRUE;
 for each w adjacent to v
 if (!w.known)
 if (v.dist + cvw < w.dist) {
 decrease (w.dist to v.dist + cvw);
 w.path = v;
 }
}
Edge Types

After DFS, edges can be classified into the following types:

- **tree edges** -- a discovered vertex v_1 encounters an undiscovered vertex v_2; the edge between them is a tree edge.
- **back edges** -- a discovered edge v_1 encounters a discovered but unfinished vertex v_2; the edge between them is a back edge. (Graph has a cycle if and only if there is a back edge.)
- **forward edges** (directed graphs only) -- a discovered vertex v_1 encounters a finished vertex v_2.
- **cross edges** (directed graphs only) -- a discovered vertex v_1 encounters a finished vertex v_2 and $d[v_1] > d[v_2]$

<table>
<thead>
<tr>
<th>Condition</th>
<th>Type of Edge (v_1, v_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $(d[v_1] < d[v_2])$ && $(f[v_1] > f[v_2])$</td>
<td>Tree</td>
</tr>
<tr>
<td>Else if $(d[v_1] > d[v_2])$ && $(f[v_1] < f[v_2])$</td>
<td>Back</td>
</tr>
<tr>
<td>Else if $(d[v_1] > d[v_2])$ && $(f[v_1] > f[v_2])$</td>
<td>Cross</td>
</tr>
<tr>
<td>Else $(d[v_1] < d[v_2]-1)$ && $(f[v_1] > f[v_2])$</td>
<td>Forward</td>
</tr>
</tbody>
</table>
Traversals Performance

What is the performance of DF and BF traversal?

Each vertex appears in the stack or queue exactly once. Therefore, the traversals are at least $O(|V|)$. However, at each vertex, we must find the adjacent vertices. Therefore, df- and bf-traversal performance depends on the performance of the getAdjacent operation.

getAdjacent

Method 1: Look at every vertex (except u), asking "are you adjacent to u?"

```java
List L = new List(<class of vertex>);
for (each vertex v, except u)
    if (isConnected(u,v))
        L.doInsert(v);
```

Assuming $O(1)$ performance on isConnected, getAdjacent has $O(|V|)$ performance and traversal performance is $O(|V|^2)$;
getAdjacent (cont)

Method 2: Look only at the edges which impinge on u. Therefore, at each vertex, the number of vertices to be looked at is \(D(u) \), the degree of the vertex (use outdegree for directed graph).

This approach is \(O(D(u)) \). The traversal performance is

\[
O\left(\sum_{i=1}^{\mid V \mid} D(v_i)\right) = O(E)
\]

which is \(\max(O(|V|), O(|E|)) = O(|V| + |E|) \).

Number of Edges

Theorem: The number of edges in an undirected graph \(G=(V,E) \) is \(O(|V|^2) \)

Proof: Suppose \(G \) is fully connected. Let \(p=|V| \). We have the following situation:

<table>
<thead>
<tr>
<th>vertex</th>
<th>connected to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,3,4,5,…, p</td>
</tr>
<tr>
<td>2</td>
<td>1,3,4,5,…, p</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>p</td>
<td>1,2,3,4,…,p-1</td>
</tr>
</tbody>
</table>

There are \(p(p-1)/2 = O(|V|^2) \) edges.

So \(O(|E|) = O(|V|^2) \).
Adjacency Table Implementation

Uses table of size $|V| \times |V|$ where each entry (i,j) is boolean
- TRUE if there is an edge from vertex i to vertex j
- FALSE otherwise
- store weights when edges are weighted

```
  a b c d e
a 0 1 0 0 1
b 1 0 1 1 0
c 0 1 0 1 0
d 0 1 1 0 1
e 1 0 0 1 0
```

Adjacency Table (cont.)

Storage requirement:

Performance:

<table>
<thead>
<tr>
<th>Method</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetDegree(u)</td>
<td></td>
</tr>
<tr>
<td>getInDegree(u)</td>
<td></td>
</tr>
<tr>
<td>getOutDegree(u)</td>
<td></td>
</tr>
<tr>
<td>GetAdjacent(u)</td>
<td></td>
</tr>
<tr>
<td>GetAdjacentFrom(u)</td>
<td></td>
</tr>
<tr>
<td>IsConnected(u,v)</td>
<td></td>
</tr>
</tbody>
</table>