8 Parsing

Top down vs. bottom up parsing
- The parsing problem is to connect the root node S with the tree leaves, the input
- **Top-down parsers**: starts constructing the parse tree at the top (root) and move down towards the leaves. Easy to implement by hand, but requires restricted grammars. E.g.:
 - Predictive parsers (e.g., LL(k))
- **Bottom-up parsers**: build nodes on the bottom of the parse tree first. Suitable for automatic parser generation, handles larger class of grammars. E.g.:
 - shift-reduce parser (or LR(k) parsers)

Top down vs. bottom up parsing
- Both are general techniques that can be made to work for all languages (but not all grammars!)
- Recall that a given language can be described by several grammars
- Both of these grammars describe the same language
 - E → E + Num
 - E → Num
 - E → Num + E
- The first one, with it’s left recursion, causes problems for top down parsers
- For a given parsing technique, we may have to transform the grammar to work with it

Parsing complexity
- How hard is the parsing task? How to we measure that?
- Parsing an arbitrary CFG is $O(n^3)$ -- it can take time proportional the cube of the number of input symbols
 - This is bad! (why?)
- If we constrain the grammar somewhat, we can always parse in linear time. This is good! (why?)
- Linear-time parsing
 - LL parsers
 - Recognize LL grammar
 - Use a top-down strategy
 - LR parsers
 - Recognize LR grammar
 - Use a bottom-up strategy
 - LL(n) : Left to right, Leftmost derivation, look ahead at most n symbols.
 - LR(n) : Left to right, Right derivation, look ahead at most n symbols.
- How hard is the parsing task? How to we measure that?
- Parsing an arbitrary CFG is $O(n^3)$ -- it can take time proportional the cube of the number of input symbols
 - This is bad! (why?)
- If we constrain the grammar somewhat, we can always parse in linear time. This is good! (why?)
- Linear-time parsing
 - LL parsers
 - Recognize LL grammar
 - Use a top-down strategy
 - LR parsers
 - Recognize LR grammar
 - Use a bottom-up strategy
 - LL(n) : Left to right, Leftmost derivation, look ahead at most n symbols.
 - LR(n) : Left to right, Right derivation, look ahead at most n symbols.
- Linear-time parsing
 - LL parsers
 - Recognize LL grammar
 - Use a top-down strategy
 - LR parsers
 - Recognize LR grammar
 - Use a bottom-up strategy
 - LL(n) : Left to right, Leftmost derivation, look ahead at most n symbols.
 - LR(n) : Left to right, Right derivation, look ahead at most n symbols.
- Linear-time parsing
 - LL parsers
 - Recognize LL grammar
 - Use a top-down strategy
 - LR parsers
 - Recognize LR grammar
 - Use a bottom-up strategy
 - LL(n) : Left to right, Leftmost derivation, look ahead at most n symbols.
 - LR(n) : Left to right, Right derivation, look ahead at most n symbols.
- Linear-time parsing
 - LL parsers
 - Recognize LL grammar
 - Use a top-down strategy
 - LR parsers
 - Recognize LR grammar
 - Use a bottom-up strategy
 - LL(n) : Left to right, Leftmost derivation, look ahead at most n symbols.
 - LR(n) : Left to right, Right derivation, look ahead at most n symbols.
Top Down Parsing Methods: Problems

• When going forward, the parser consumes tokens from the input, so what happens if we have to back up?
 – suggestions?
• Algorithms that use backup tend to be, in general, inefficient
 – There might be a large number of possibilities to try before finding the right one or giving up
• Grammar rules which are left-recursive lead to non-termination!

Recursive Decent Parsing: Example

For the grammar:

\[\text{<term> } \rightarrow \text{<factor>} \{(*|/)<factor>\}^*\]

We could use the following recursive descent parsing subprogram (this one is written in C)

```c
void term() {
    factor(); /* parse first factor*/
    while (next_token == ast_code ||
           next_token == slash_code) {
        lexical(); /* get next token */
        factor(); /* parse next factor */
    }
}
```

Problems

• Some grammars cause problems for top down parsers
• Top down parsers do not work with left-recursive grammars
 – E.g., one with a rule like: \(E \rightarrow E + T\)
 – We can transform a left-recursive grammar into one which is not
• A top down grammar can limit backtracking if it only has one rule per non-terminal
 – The technique of rule factoring can be used to eliminate multiple rules for a non-terminal

Left-recursive grammars

• A grammar is left recursive if it has rules like
 \(X \rightarrow X \beta\)
• Or if it has indirect left recursion, as in
 \(X \rightarrow A \beta\)
 \(A \rightarrow X\)
• Q: Why is this a problem?
 – A: it can lead to non-terminating recursion!

Direct Left-Recursive Grammars

• Consider
 \(E \rightarrow E + \text{Num}\)
 \(E \rightarrow \text{Num}\)
• We can manually or automatically rewrite a grammar removing left-recursion, making it ok for a top-down parser.

Elimination of Direct Left-Recursion

• Consider left-recursive grammar
 \(S \rightarrow S \alpha\)
 \(S \rightarrow \beta\)
• S generates strings
 \(\beta\)
 \(\beta \alpha\)
 \(\beta \alpha \alpha\) ...
• Rewrite using right-recursion
 \(S \rightarrow \beta S'\)
 \(S' \rightarrow \alpha S' | \epsilon\)
• Concretely
 \(T \rightarrow T + \text{id}\)
 \(T \rightarrow \text{id}\)
• \(T\) generates strings
 \(\text{id}\)
 \(\text{id} + \text{id}\)
 \(\text{id} + \text{id} + \text{id} \ldots\)
• Rewrite using right-recursion
 \(T \rightarrow \text{id}\)
 \(T \rightarrow \text{id} T\)
General Left Recursion

• The grammar
 \[S \rightarrow A \alpha | \delta \]
 \[A \rightarrow S \beta \]
 is also left-recursive because
 \[S \rightarrow^+ S \beta \alpha \]
 where \(\rightarrow^+ \) means “can be rewritten in one or more steps”
• This indirect left-recursion can also be automatically eliminated (not covered)

Summary of Recursive Descent

• Simple and general parsing strategy
 – Left-recursion must be eliminated first
 – … but that can be done automatically
• Unpopular because of backtracking
 – Thought to be too inefficient
• In practice, backtracking is eliminated by further restricting the grammar to allow us to successfully predict which rule to use

Predictive Parsers

• That there can be many rules for a non-terminal makes parsing hard
• A predictive parser processes the input stream typically from left to right
 – Is there any other way to do it? Yes for programming languages!
• It uses information from peeking ahead at the upcoming terminal symbols to decide which grammar rule to use next
• And always makes the right choice of which rule to use
• How much it can peek ahead is an issue

Predictive Parsers

• An important class of predictive parser only peek ahead one token into the stream
• An LL(k) parser, does a Left-to-right parse, a Leftmost-derivation, and k-symbol lookahead
• Grammars where one can decide which rule to use by examining only the next token are LL(1)
• LL(1) grammars are widely used in practice
 – The syntax of a PL can usually be adjusted to enable it to be described with an LL(1) grammar

Predictive Parser

Example: consider the grammar

\[
S \rightarrow \text{if } E \text{ then } S \text{ else } S \\
S \rightarrow \text{begin } S L \\
S \rightarrow \text{print } E \\
L \rightarrow \text{end} \\
L \rightarrow ; S L \\
E \rightarrow \text{num = num}
\]

An S expression starts either with an IF, BEGIN, or PRINT token, and an L expression start with an END or a SEMICOLON token, and an E expression has only one production.

Remember…

• Given a grammar and a string in the language defined by the grammar …
• There may be more than one way to derive the string leading to the same parse tree
 – It depends on the order in which you apply the rules
 – And what parts of the string you choose to rewrite next
• All of the derivations are valid
• To simplify the problem and the algorithms, we often focus on one of two simple derivation strategies
 – A leftmost derivation
 – A rightmost derivation
LL(k) and LR(k) parsers

- Two important parser classes are LL(k) and LR(k).
- The name LL(k) means:
 - L: Left-to-right scanning of the input
 - L: Constructing leftmost derivation
 - k: max # of input symbols needed to predict parser action
- The name LR(k) means:
 - L: Left-to-right scanning of the input
 - R: Constructing rightmost derivation in reverse
 - k: max # of input symbols needed to select parser action
- A LR(1) or LL(1) parser never need to “look ahead” more than one input token to know what parser production rule applies.

Predictive Parsing and Left Factoring

- Consider the grammar
 - \(E \rightarrow T + E \)
 - \(E \rightarrow T \)
 - \(T \rightarrow \text{int} \)
 - \(T \rightarrow \text{int} * T \)
 - \(T \rightarrow (E) \)
- Hard to predict because
 - For \(T \), two productions start with \text{int}
 - For \(E \), it is not clear how to predict which rule to use
- Must left-factor grammar before use for predictive parsing
- Left-factoring involves rewriting rules so that, if a non-terminal has > 1 rule, each begins with a terminal.

Using Parsing Tables

- LL(1) means that for each non-terminal and token there is only one production
- Can be represented as a simple table
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one rule’s action or empty if error
- Method similar to recursive descent, except
 - For each non-terminal \(S \)
 - We look at the next token \(a \)
 - And chose the production shown at table cell \([S, a]\)
- Use a stack to keep track of pending non-terminals
- Reject when we encounter an error state, accept when we encounter end-of-input.

LL(1) Parsing Table Example

- Consider the \([E, \text{int}]\) entry
 - “When current non-terminal is \(E \) & next input \text{int}, use production \(E \rightarrow T \) \(X \)”
 - It’s the only production that can generate an \text{int} in next place
- Consider the \([Y, +]\) entry
 - “When current non-terminal is \(Y \) and current token is +, get rid of \(Y \)”
 - \(Y \) can be followed by + only in a derivation where \(\text{Y} \rightarrow \varepsilon \)
- Consider the \([E, \ast]\) entry
 - Blank entries indicate error situations
 - “There is no way to derive a string starting with * from non-terminal \(E \)”

The LL(1) parsing table:

<table>
<thead>
<tr>
<th>Non-terminal</th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>()</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)</td>
<td>(TX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(X)</td>
<td>(+ E)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
</tr>
<tr>
<td>(T)</td>
<td>(\text{int} \ Y)</td>
<td>((E))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Y)</td>
<td>(\ast)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
<td>(\varepsilon)</td>
</tr>
</tbody>
</table>
LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat
 case stack of
 <X, rest> : if T[X,*next] = Y
 then stack  <Y 1 ... Y n rest>;
 else error ();
 <t, rest> : if t == *next ++
 then stack  <rest>;
 else error ();
 until stack == < >
where:
 (1) next points to the next input token
 (2) X matches some non-terminal
 (3) t matches some terminal

Computing First Sets

Definition: First(X) = {t | X →* α} ∪ {ε | X →* ε}

Algorithm sketch (see book for details):
1. for all terminals t do First(t)  { t }
2. for each production X → α do First(X)  { ε }
3. if X → A₁ ... Aᵣ α and ε ∈ First(Aᵢ), 1 ≤ i ≤ n do add First(α) to First(X)
4. for each X → A₁ ... Aᵣ s.t. ε ∈ First(Aᵢ), 1 ≤ i ≤ n do add ε to First(X)
5. repeat steps 4 and 5 until no First set can be grown

Computing Follow Sets

- Definition:
 \[\text{Follow}(X) = \{ t | S \rightarrow* \beta X t \delta \} \]

- Intuition
 – If S is the start symbol then $S \in \text{Follow}(S)$
 – If $X \rightarrow A B$ then First(B) ⊆ Follow(A) and Follow(X) ⊆ Follow(B)
 – Also if $B \rightarrow* \epsilon$ then Follow(X) ⊆ Follow(A)

Constructing Parsing Tables

- No table entry can be multiply defined
- If $A \rightarrow \alpha$, where in the line of A do we place α?
- In column t where t can start a string derived from α
 - $\alpha \rightarrow* t \beta$
 - We say that $t \in \text{First}(\alpha)$
- In the column t if α is ϵ and t can follow an A
 - $S \rightarrow* \beta A t \delta$
 - We say $t \in \text{Follow}(A)$

First Sets. Example

Recall the grammar

<table>
<thead>
<tr>
<th>P</th>
<th>\rightarrow</th>
<th>\rightarrow</th>
<th>\rightarrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td>$X \rightarrow E$</td>
<td>$X \rightarrow *$</td>
</tr>
<tr>
<td>T</td>
<td>(E)</td>
<td>(E)</td>
<td>$</td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td>$T \rightarrow (E)$</td>
<td>$</td>
</tr>
<tr>
<td>int Y</td>
<td>$T \rightarrow (E)$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$+$</td>
<td>$X \rightarrow E \epsilon$</td>
<td>$X \rightarrow E \epsilon$</td>
<td>$</td>
</tr>
<tr>
<td>$*$</td>
<td>$X \rightarrow E \epsilon$</td>
<td>$X \rightarrow E \epsilon$</td>
<td>$</td>
</tr>
</tbody>
</table>

First sets

- First() = { () }
- First(T) = { int, () }
- First(E) = { int, () }
- First(int) = { int }
- First(X) = { +, ε }
- First(Y) = { *, ε }
- First() = { * }

Computing Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>pop() push(T X)</td>
</tr>
<tr>
<td>T X $</td>
<td>int * int $</td>
<td>pop() push(int Y)</td>
</tr>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>pop() halt</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>pop() push(* T)</td>
</tr>
<tr>
<td>T X $</td>
<td>int $</td>
<td>pop() push(int Y)</td>
</tr>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>pop() push(int Y)</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>pop() push(* T)</td>
</tr>
<tr>
<td>T X $</td>
<td>int $</td>
<td>pop() push(int Y)</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>pop() push(* T)</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>pop()</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>ACCEPT!</td>
</tr>
</tbody>
</table>
Computing Follow Sets

Algorithm sketch:

1. Follow(S) $\leftarrow \{ \$ \}$
2. For each production $A \rightarrow \alpha X \beta$
 * add First(β) - $\{ \varepsilon \}$ to Follow(X)
3. For each $A \rightarrow \alpha X \beta$ where $\varepsilon \in$ First(β)
 * add Follow(A) to Follow(X)
 * repeat step(s) ___ until no Follow set grows

Follow Sets. Example

- Recall the grammar

 $E \rightarrow TX$
 $X \rightarrow +E | \varepsilon$
 $T \rightarrow (E) | int Y$
 $Y \rightarrow *T | \varepsilon$

- Follow sets

 Follow(+) = \{ int, () \}
 Follow(*) = \{ int, () \}
 Follow(()) = \{ int, () \}
 Follow(E) = \{ (), $ \}
 Follow(X) = \{ (), $ \}
 Follow(T) = \{ (), $ \}
 Follow(int) = \{ *, (), $ \}$

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in$ First(α) do
 * $T[A, t] = \alpha$
 - If $\varepsilon \in$ First(α), for each $t \in$ Follow(A) do
 * $T[A, t] = \alpha$
 - If $\varepsilon \in$ First(α) and $\$ \in$ Follow(A) do
 * $T[A, \$] = \alpha$

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
- Reasons why a grammar is not LL(1) include
 - G is ambiguous
 - G is left recursive
 - G is not left-factored
- Most programming language grammars are not strictly LL(1)
- There are tools that build LL(1) tables

Bottom-up Parsing

- YACC uses bottom up parsing. There are two important operations that bottom-up parsers use: **shift** and **reduce**
 - In abstract terms, we do a simulation of a Push Down Automata as a finite state automata
- Input: given string to be parsed and the set of productions.
- Goal: Trace a rightmost derivation in reverse by starting with the input string and working backwards to the start symbol