
1

Variables,
Environments
and Closures

Overview

• Touch on the notions of variable extent and
scope

• Introduce the notions of lexical scope and
dynamic scope for variables

• Provide a simple model for variable
environments in Scheme

• Show examples of closures in Scheme

Variables, free and bound

• In this function, to what does the variable
GOOGOL refer?

(define (big-number? x)

;; returns true if x is a really big number

(> x GOOGOL))

• The scope of the variable X is just the body of
the function for which it’s a parameter.

Here, GOOGOL is a global variable

> (define GOOGOL (expt 10 100))

> GOOGOL

10000000000000000000000000000000000000
0000000000000000000000000000000000000
00000000000000000000000000

> (define (big-number? x) (> x GOOGOL))

> (big-number? (add1 (expt 10 100)))

#t

Which X is accessed at the end?

> (define GOOGOL (expt 10 100))

> GOOGOL

1000
00
000000000000000

> (define x -1)

> (define (big-number? x) (> x GOOGOL))

> (big-number? (add1 (expt 10 100)))

#t

2

Variables, free and bound

• In the body of this function, we say that the
variable (or symbol) X is bound and GOOGOL
is free

(define (big-number? x)

; returns true if X is a really big number

(> X GOOGOL))

• If it has a value, it has to be bound somewhere
else

The let form creates local variables

> (let [(pi 3.1415)

(e 2.7168)]

(big-number? (expt pi e)))

#f

• The general form is (let <varlist> . <body>)

• It creates a local environment, binding the
variables to their initial values, and evaluates
the expressions in <body>

Note: square brackets are
like parens, but only match
other square brackets.
They can to help you cope
with paren fatigue.

Let creates a block of expressions

(if (> a b)

(let ()

(printf "a is bigger than b.~n")

(printf "b is smaller than a.~n")

#t)

#f)

Let is just syntactic sugar for lambda

(let [(pi 3.1415) (e 2.7168)]
(big-number? (expt pi e)))

((lambda (pi e) (big-number? (expt pi e)))

3.1415

2.7168)

and this is how we did it back before ~1973

Let is just syntactic sugar for lambda

What happens here:

(define x 2)

(let [(x 10) (xx (* x 2))]

(printf "x is ~s and xx is ~s.~n" x xx))

x is 10 and xx is 4.

Let is just syntactic sugar for lambda

What happens here:

(define x 2)

((lambda (x xx) (printf "x is ~s and xx is ~s.~n" x xx))

10

(* 2 x))

x is 10 and xx is 4.

3

Let is just syntactic sugar for lambda

What happens here:

(define x 2)

(define (f000034 x xx)

(printf "x is ~s and xx is ~s.~n" x xx))

(f000034 10 (* 2 x))

x is 10 and xx is 4.

let and let*
• The let special form evaluates all initial value

expressions, and then creates a new environ-
ment with local variables bound to them, “in
parallel”

• The let* form does is sequentially

• let* expands to a series of nested lets

(let* [(x 100)(xx (* 2 x))] (foo x xx))

(let [(x 100)]
(let [(xx (* 2 x))]

(foo x xx)))

What happens here?

> (define X 10)

> (let [(X (* X X))]
(printf "X is ~s.~n" X)
(set! X 1000)
(printf "X is ~s.~n" X)
-1)

???

> X

???

What happens here?

> (define X 10)

 (let [(X (* X X))]
(printf “X is ~s\n” X)
(set! X 1000)
(printf “X is ~s\n” X)
-1)

X is 100

X is 1000

-1

> X

10

What happens here?

> (define GOOGOL (expt 10 100))

> (define (big-number? x) (> x GOOGOL))

> (let [(GOOGOL (expt 10 101))]

(big-number? (add1 (expt 10 100))))

???

What happens here?

> (define GOOGOL (expt 10 100))

> (define (big-number? x) (> x GOOGOL))

> (let [(GOOGOL (expt 10 101))]

(big-number? (add1 (expt 10 100))))

#t

• The free variable GOOGOL is looked up in the
environment in which the big-number?
function was defined!

• Not in the environment in which it was called

4

functions
• Note that a simple notion of a function can

give us the machinery for

– Creating a block of code with a sequence of
expressions to be evaluated in order

– Creating a block of code with one or more
local variables

• Functional programming language is to use
functions to provide other familiar constructs
(e.g., objects)

• And also constructs that are unfamiliar

Dynamic vs. Static Scoping

• Programming languages either use dynamic or
static (aka lexical) scoping

• In a statically scoped language, free variables in
functions are looked up in the environment in
which the function is defined

• In a dynamically scoped language, free
variables are looked up in the environment in
which the function is called

History

• Lisp started out as a dynamically scoped
language and moved to static scoping with
Common Lisp in ~1980

• Today, fewer languages use only dynnamic
scoping, Logo and Emacs Lisp among them

• Perl and Common Lisp let you define some
variables as dynamically scoped

Dynamic scoping

Here’s a model for dynamic binding:

• Variables have a global stack of bindings

• Creating a new variable X in a block pushes a
binding onto the global X stack

• Exiting the block pops X's binding stack

• Accessing X always produces the top binding

Special variables in Lisp
• Common Lisp's dynamically scoped variables

are called special variables

• Declare a variable special using defvar

> (set 'reg 5)
5
> (defun check-reg () reg)
CHECK-REG
> (check-reg)
5
> (let ((reg 6)) (check-reg))
5

> (defvar *spe* 5)
SPE
> (defun check-spe () *spe*)
CHECK-SPE
> (check-spe)
5
> (let ((*spe* 6)) (check-spe))
6

Advantages and disadvantages

• + Easy to implement

• + Easy to modify a function’s behavior by
dynamically rebinding free variables

(let ((IO stderr)) (printf “warning…”))

• - Can unintentionally shadow a global variable

• - A compiler can never know what a free
variable will refer to, making type checking
impossible

http://en.wikipedia.org/wiki/Scope_(programming)
http://en.wikipedia.org/wiki/Common_Lisp
http://en.wikipedia.org/wiki/Logo_(programming_language)
http://en.wikipedia.org/wiki/Emacs_Lisp

5

Closures

• Lisp is a lexically scoped language

• Free variables referenced in a function are
looked up in the environment in which the
function is defined
Recall: free variables are those a function (or block)
doesn’t create scope for

• A closure is a function that remembers the
environment in which it was created

• An environment is just a collection of variable
names and their values, plus a parent
environment

Why closures, where closures

• Closures turn out to be very useful in
languages that support functional
programming

• Most modern dynamic PLs do: Python,
Javascript, Php, Ruby, etc.

• They are interesting when you can (1) define a
function in an environment, (2) return a
reference to it outside the environment and
(3) call the function later

Example: make-counter
• make-counter creates an environment using let with

a local variable C initially 0

• It defines and returns a new function, using lambda,
that can access & modify C

> (define (make-counter)

(let ((C 0))
(lambda ()

(set! C (+ 1 C))

C)))

> (define c1 (make-counter))

> (define c2 (make-counter))

> (c1)

1

> (c1)

2

> (c1)

3

> (c2)

???

What is a function?

• (define (add1 x) (+ x 1))

• This binds the variable add1 to a new function

• In Scheme, a function is just a data structure
with three components:

– A parameter list (e.g., (x))

– An expression to evaluate (e.g., (+ x 1))

– A pointer to the variable environment it was
created in

What’s an environment?

• An environment is a data structure with two
parts:

1. A pointer to its parent environment (which might
be null if this environment is the top-level global
one)

2. A data structure to hold pairs of variable names
and their current values (e.g., a dictionary,
hashtable or even a simple list)

• Operations on an environment include define,
set! and lookup

Environment Operations

• Define: add a new variable in an environment
and give it an initial value

• Lookup: find a variable in an enviroment or
one of its ancestors and return its value

• Set!: find a variable in an environment or one
of its ancestors and change its value

http://en.wikipedia.org/wiki/Closure_(computer_science)

6

> (define C 100)
> (define (mc) (let ((C 0)) (lambda () (set! C (+ C 1)) C)))
> (define c1 (mc))
> (define c2 (mc))
> (c1)
1
> (c2)
1

parent

global env

null

> (define C 100)
> (define (mc) (let ((C 0)) (lambda () (set! C (+ C 1)) C)))
> (define c1 (mc))
> (define c2 (mc))
> (c1)
1
> (c2)
1

parent

C

global env

null

100

> (define C 100)
> (define (mc) (let ((C 0)) (lambda () (set! C (+ C 1)) C)))
> (define c1 (mc))
> (define c2 (mc))
> (c1)
1
> (c2)
1

parent

C

mc

global env

null

100

() (let ((C 0)) …)

> (define C 100)
> (define (mc) (let ((C 0)) (lambda () (set! C (+ C 1)) C)))
> (define c1 (mc))
> (define c2 (mc))
> (c1)
1
> (c2)
1

parent

C

mc

c1

global env

null

100

() ((let ((C 0)) …))

() ((set! C (+ C 1)) C)

parent

C 0

> (define C 100)
> (define (mc) (let ((C 0)) (lambda () (set! C (+ C 1)) C)))
> (define c1 (mc))
> (define c2 (mc))
> (c1)
1
> (c2)
1

parent

C

mc

c1

c2

global env

null

100

() ((let ((C 0)) …))

() ((set! C (+ C 1)) C)

parent

C 0

() ((set! C (+ C 1)) C)

parent

C 0

> (define C 100)
> (define (mc) (let ((C 0)) (lambda () (set! C (+ C 1)) C)))
> (define c1 (mc))
> (define c2 (mc))
> (c1)
1
> (c2)
1

parent

C

mc

c1

c2

global env

null

100

() ((let ((C 0)) …))

() ((set! C (+ C 1)) C)

parent

C 1

() ((set! C (+ C 1)) C)

parent

C 0

7

> (define C 100)
> (define (mc) (let ((C 0)) (lambda () (set! C (+ C 1)) C)))
> (define c1 (mc))
> (define c2 (mc))
> (c1)
1
> (c2)
1

parent

C

mc

c1

c2

global env

null

100

() ((let ((C 0)) …))

() ((set! C (+ C 1)) C)

parent

C 1

() ((set! C (+ C 1)) C)

parent

C 1

A fancier make-counter

Write a fancier make-counter function that takes
an optional argument that specifies the
increment
> (define by1-counter (make-counter))

> (define by2-counter (make-counter 2))

> (define decrementing-counter (make-counter -1))

> (by2-counter)

2

(by2-counter)

4

Optional arguments in Scheme

> (define (f (x 10) (y 20))
(printf "x=~a and y=~a\n" x y))

> (f)

x=10 and y=20

> (f -1)

x=-1 and y=20

> (f -1 -2)

x=-1 and y=-2

Fancier make-counter

(define (make-counter (inc 1))

(let ((C 0))

(lambda () (set! C (+ C inc)))))

Keyword arguments in Scheme

• Scheme, like Lisp, also has a way to define
functions that take keyword arguments

–(make-counter)

–(make-counter :initial 100)

–(make-counter :increment -1)

–(make-counter :initial 10 :increment -2)

• Scheme dialects have introduced different
ways to mix positional arguments, optional
arguments, default values, keyword argument,
etc.

Closure tricks

We can write several
functions that are
closed in the same
environment, which
can then provide a
private
communication
channel

(define foo #f)

(define bar #f)

(let ((secret-msg "none"))

(set! foo
(lambda (msg)

(set! secret-msg msg)))

(set! bar
(lambda () secret-msg)))

(display (bar)) ; prints "none"

(newline)

(foo "attack at dawn")

(display (bar)) ; prints ”attack at
dawn"

8

Closures are powerful

• Closures let do many interesting and useful
things, including

– Delay a computation and execute it later

– Implement streams

– Curry functions

– Etc.

• We’ll look at some of these next

Summary

• Scheme, like most modern languages, is
lexically scoped

• Common Lisp is by default, but still allows
some variables to be declared to be
dynamically scoped

• A few languages still use dynamic scoping

• Lexical scoping supports functional program-
ming & powerful mechanisms (e.g., closures)

• More complex to implement, though

