Tail Recursion

Problems with Recursion

- Recursion is generally favored over iteration in Scheme and many other languages
- It's elegant, minimal, can be implemented with regular functions and easier to analyze formally
- Some languages don't have iteration (Prolog)
- It can also be less efficient
more functional calls and stack operations (context saving and restoration)
- Running out of stack space leads to failure deep recursion

Tail recursion is iteration

- Tail recursion is a pattern of use that can be compiled or interpreted as iteration, avoiding the inefficiencies
- A tail recursive function is one where every recursive call is the last thing done by the function before returning and thus produces the function's value
- More generally, we identify some procedure calls as tail calls

Tail Call

A tail call is a procedure call inside another procedure that returns a value which is then immediately returned by the calling procedure

```
def foo(data): def foo(data):
    bar1(data)
    if test(data):
    return bar2(data)
        return bar2(data)
    else:
                            return bar3(data)
```

A tail call need not come at the textual end of the procedure, but at one of its logical ends

Tail call optimization

- When a function is called, we must remember the place it was called from so we can return to it with the result when the call is complete
- This is typically stored on the call stack
- There is no need to do this for tail calls
- Instead, we leave the stack alone, so the newly called function will return its result directly to the original caller

Scheme's top level loop

- Consider a simplified version of the REPL
(define (repl)
(printf " $>$ ")
(print (eval (read)))
(repl))
- This is an easy case: with no parameters there is not much context

Scheme's top level loop 2

- Consider a fancier REPL

$$
\begin{aligned}
& \text { (define (repl) (repl1 0)) } \\
& \text { (define (repl1 n) } \\
& \text { (printf "~s> " n) } \\
& \text { (print (eval (read))) } \\
& \text { (repl1 (add1 n))) }
\end{aligned}
$$

- This is only slightly harder: just modify the local variable n and start at the top

Scheme's top level loop 3

- There might be more than one tail recursive call (define (repl1 n)

$$
\begin{aligned}
& \text { (printf "~s> "n) } \\
& \text { (print (eval (read))) } \\
& \text { (if (= n 9) } \\
& \quad \text { (repl1 0) } \\
& \quad \text { (repl1 (add1 n)))) }
\end{aligned}
$$

- What's important is that there's nothing more to do in the function after the recursive calls

Simple Recursive Factorial

(define (fact1 n)
;; naive recursive factorial
(if (<n 1)
1
(* $n($ fact1 (sub1 n)) $)))$

No. It must be called and its
value returned before the
multiplication can be done

Tail recursive factorial

(define (fact2 n)

; rewrite to just call the tail-recursive
; factorial with the appropriate initial values
(fact2.1 n 1))

```
Trace shows what's
    #race shows Whats ( (fact1 5)
    > (requireracket/trace) || (fact1 3)
    >(load "fact.ss") ||(fact1 2)
    > (trace fact1) || (fact1 1)
    >(fact1 6) |||(fact1 0)
|(fact1 6)
    | | |1
    |||
    || |
    ||
    | |24
    | 120
    |720
    720
```

```
> (trace fact2 fact2.1)
> (fact2 6)
|(fact2 6)
|(fact2.16 1)
|(fact2.15 6)
|(fact2.1 4 30)
|(fact2.1 3 120)
|(fact2.1 2 360)
|(fact2.1 1 720)
|(fact2.1 0 720)
|720
720
- Interpreter \& compiler note the last expression to be evaled \& returned in fact2.1 is a recursive call
- Instead of pushing state on the sack, it reassigns the local variables and jumps to beginning of the procedure
- Thus, the recursion is automatically transformed into iteration
```


Reverse a list

- This version works, but has two problems
(define (rev1 list)
; returns the reverse a list
(if (null? list)
empty
(append (rev1 (rest list)) (list (first list))))))
- It is not tail recursive
- It creates needless temporary lists

A better reverse

(define (rev2 list) (rev2.1 list empty))
(define (rev2.1 list reversed)
(if (null? list)
reversed
(rev2.1 (rest list)
(cons (first list) reversed))))

```
> (load "reverse.ss")
> (trace rev1 rev2 rev2.1)
rev1 and rev2
>(rev1 '(a b c))
|(rev1 (a b c))
| (rev1 (b c))
>(rev2 '(a b c))
|(rev2 (a b c))
| |(rev1 (c)) |(rev2.1 (abc) ())
| | (rev1 ()) |(rev2.1 (b c) (a))
| | ()
    |(rev2.1 (c) (b a))
| |(c)
| (c b)
|(c b a)
    (c b a)
(c b a)
(c b a)
>
```


The other problem

- Append copies the top level list structure of it's first argument.
- (append '(1 2 3) '(4 5 6)) creates a copy of the list (12 3) and changes the last cdr pointer to point to the list (456)
- In reverse, each time we add a new element to the end of the list, we are (re-)copying the list.

Append (two args only)

(define (append list1 list2)
(if (null? list1) list2
(cons (first list1)
(append (rest list1) list2))))

Why does this matter?

- The repeated rebuilding of the reversed list is needless work
- It uses up memory and adds to the cost of garbage collection (GC)
- GC adds a significant overhead to the cost of any system that uses it
- Experienced programmers avoid algorithms that needlessly consume memory that must be garbage collected

This has two problems

- That recursive calls are not tail recursive is the least of its problems
- It also needlessly recomputes many values

Tail-recursive version of Fib

Here's a tail-recursive version that runs in $0(n)$
(define (fib2 n)
(cond $((=n 0) 0)$
((=n1) 1)
(\#t (fib-trn 20 1))))
(define (fib-tr target $\mathrm{n} f 2 \mathrm{f} 1$)
(if (= n target)
(+f 2 f 1)
(fib-tr target (+ n 1) f1 (+f1 f2))))

We pass four args: n is the current index, target is the index of the number we want, $f 2$ and $f 1$ are the two previous fib numbers

Fibonacci

- Another classic recursive function is computing the nth number in the fibonacci series
(define (fib n)

n
(+ (fib (-n 1))
Are these tail calls? (fib (- n 2$)$))))
- But its grossly inefficient
- Run time for $\mathrm{fib}(\mathrm{n}) \cong 0\left(2^{\mathrm{n}}\right)$
- (fib 100) can not be computed this way

 | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 | 233 | 377 | 610 | 987 | 1597 | 2584 | 4181 | 6765 |
| :--- |

Compare to an iterative version

- The tail recursive version passes the "loop variables" as arguments to the recursive calls
- It's just a way to do iteration using recursive functions without the

def fib(n): if $\mathrm{n}<3$: return 1 else: f2 $=\mathrm{f} 1=1$ $x=3$ while $x<n$: $\mathrm{f} 1, \mathrm{f} 2=\mathrm{f} 1+\mathrm{f} 2, \mathrm{f} 1$ return $\mathrm{f} 1+\mathrm{f} 2$

No tail call elimination in many PLs

- Many languages don't optimize tail calls, including C, Java and Python
- Recursion depth is constrained by the space allocated for the call stack
- This is a design decision that might be justified by the worse is better principle
- See Guido van Rossum's comments on TRE need for special iteration operators

Python example

$>\operatorname{def}$ dive($n=1$):
... print n,
... dive($\mathrm{n}+1$)
>>> dive()
12345678910 ... 998999
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in dive
... 994 more lines ...
File "<stdin>", line 3, in dive
File "<stdin>", line 3, in dive
File "<stdin>", line 3, in dive
RuntimeError: maximum recursion depth exceeded
>>>

Conclusion

- Recursion is an elegant and powerful control mechanism
- We don't need to use iteration
- We can eliminate any inefficiency if we

Recognize and optimize tail-recursive calls, turning recursion into iteration

- Some languages (e.g., Python) choose not to do this, and advocate using iteration when appropriate
But side-effect free programming remains easier to analyze and parallelize

