
1

Lists in Lisp
and Scheme

a

Lists in Lisp and Scheme

• Lists are Lisp’s fundamental data structures,
but there are others

– Arrays, characters, strings, etc.

– Common Lisp has moved on from being
merely a LISt Processor

• However, to understand Lisp and Scheme
you must understand lists

– common functions on them

– how to build other useful data structures
with them

Lisp Lists

• Lists in Lisp and its descendants are very
simple linked lists

– Represented as a linear chain of nodes

• Each node has a (pointer to) a value (car of
list) and a pointer to the next node (cdr of list)

– Last node’s cdr pointer is to null

• Lists are immutable in Scheme

• Typical access pattern is to traverse the list
from its head processing each node

In the beginning was the cons (or pair)

• What cons really does is combines two objects into a
two-part object called a cons in Lisp and a pair in
Scheme

• Conceptually, a cons is a pair of pointers -- the first is
the car, and the second is the cdr

• Conses provide a convenient representation for pairs
of any type

• The two halves of a cons can point to any kind of
object, including conses

• This is the mechanism for building lists

• (pair? ‘(1 2)) => #t

a null

Pairs

• Lists in Lisp and Scheme are defined as
pairs

•Any non empty list can be considered as a
pair of the first element and the rest of
the list

•We use one half of a cons cell to point to
the first element of the list, and the other
to point to the rest of the list (which is
either another cons or nil)

a

Box and pointer notation

a

A one element list (a)

a b c

A list of three elements (a b c)

a null

Common notation:
use diagonal line in
cdr part of a cons
cell for a pointer to
null

(a)

(a b c)

http://docs.racket-lang.org/reference/pairs.html
http://docs.racket-lang.org/reference/pairs.html

2

What sort of list is this?

a d

b c

> (define Z (list ‘a (list ‘b ‘c) ‘d))

> Z

(a (b c) d)

> (car (cdr z))

??

Z

Z is a list with three

elements: (i) the atom a,

(ii) a list of two elements,

b & c and (iii) the atom d.

Pair?

• The function pair? returns true if its
argument is a cons cell

• The equivalent function in CL is consp

• So list? could be defined:

(define (list? x) (or (null? x) (pair? x)))

• Since everything that is not a pair is an
atom, the predicate atom could be defined:

(define (atom? x) (not (pair? x)))

Equality
• Each time you call

cons, Scheme
allocates a new
cons cell from
memory with room
for two pointers

• If we call cons twice
with the same args,
we get two values
that look the same,
but are distinct
objects

(define L1 (cons 'a null))

L1

(A)

(define L2 (cons 'a null)))

L2

(A)

(eq? L1 L2)

#f

(equal? L1 L2)

#t

(and (eq? (car L1)(car L2))

(eq? (cdr L1)(cdr L2)))

#t

Equal?

• Do two lists have the same elements?

• Scheme provides a predicate equal? that is like
Java’s equal method

• eq? returns true iff its arguments are the same
object, and

• equal?, more or less, returns true if its
arguments would print the same.

> (equal? L1 L2)

#t

• Note: (eq? x y) implies (equal? x y)

Equal?

(define (myequal? x y)

; this is how equal? could be defined

(cond ((and (number? x) (number? y))(= x y))

((and (string? x) (string? y)) (string=? x y))

((not (pair? x)) (eq? x y))

((not (pair? y)) #f)

((myequal? (car x) (car y))

(myequal? (cdr x) (cdr y)))

(#t #f)))

Use trace to see how it works
> (require racket/trace)

> (trace myequal?)

> (myequal? '(a b c) '(a b c))

>(myequal? (a b c) (a b c))

> (myequal? a a)

< #t

>(myequal? (b c) (b c))

> (myequal? b b)

< #t

>(myequal? (c) (c))

> (myequal? c c)

< #t

>(myequal? () ())

<#t

#t

• Trace is a debugging package showing what args a user-
defined function is called with and what it returns

• The require function loads the package if needed

http://docs.racket-lang.org/reference/booleans.html?q=equal?&q=list-tail&q=list-ref(def._((quote._~23~25kernel)._equal~3f))
http://docs.racket-lang.org/reference/booleans.html?q=eq?&q=equal?&q=list-tail&q=list-ref(def._((quote._~23~25kernel)._eq~3f))
http://docs.racket-lang.org/reference/debugging.html

3

Does Lisp have pointers?

• A secret to understanding Lisp is to realize that
variables have values in the same way that lists
have elements

• As pairs have pointers to their elements,
variables have pointers to their values

• Scheme maintains a data structure
representing the mapping of variables to their
current values.

Variables point to their values

> (define x ‘(a b))

> x

(a b)

> (define y x)

y

(a b)

VAR VALUE

…

x

…

y

…

environment

a b

Does Scheme have pointers?

• The location in memory associated with the
variable x does not contain the list itself, but a
pointer to it.

• When we assign the same value to y, Scheme
copies the pointer, not the list.

• Therefore, what would the value of

> (eq? x y)

be, #t or #f?

Variables point to their values

> (define x ‘(a b))

> x

(a b)

> (define y x)

y

(a b)

VAR VALUE

…

x

…

y

…

environment

a b

Variables point to their values

> (define x ‘(a b))

> x

(a b)

> (define y x)

y

(a b)

> (set! y ‘(1 2))

> y

(1 2)

VAR VALUE

…

x

…

y

…

environment

a b

1 2

Length is a simple function on Lists

• The built-in function length takes a list and
returns the number of its top-level elements

• Here’s how we could implement it

(define (length L)

(if (null? L) 0 (+ 1 (length (cdr L))))

• As typical in dynamically typed languages
(e.g., Python), we do minimal type checking

– The underlying interpreter does it for us

– Get run-time error if we apply length to a non-list

http://en.wikipedia.org/wiki/Dynamic_typing#Dynamic_typing

4

Building Lists

• list-copy takes a list and returns a copy of it

• The new list has the same elements, but
contained in new pairs

> (set! x ‘(a b c))

(a b c)

> (set! y (list-copy x))

(a b c)

• Spend a few minutes to draw a box diagram
of x and y to show where the pointers point

Copy-list

• List-copy is a Lisp built-in (as copy-list) that
could be defined in Scheme as:

(define (list-copy s)

(if (pair? s)

(cons (list-copy (car s))

(list-copy (cdr s)))

s))

•Given a non-atomic s-expression, it makes and
returns a complete copy (e.g., not just the top-
level spine)

Append
• append returns the

concatenation of
any number of lists

• Append copies its
arguments except
the last
–If not, it would have

to modify the lists
–Such side effects

are undesirable in
functional
languages

>(append ‘(a b) ‘(c d))

(a b c d)

> (append ‘((a)(b)) ‘(((c))))

((a) (b) ((c)))

> (append ‘(a b) ‘(c d) ‘(e))

(a b c d e)

>(append ‘(a b) ‘())

(a b)

>(append ‘(a b))

(a b)

>(append)

()

Append

• The two argument version of append could be
defined like this

(define (append2 s1 s2)
(if (null? s1)

s2
(cons (car s1)

(append2 (cdr s1) s2))))

• Notice how it ends up copying the top level list
structure of its first argument

Visualizing Append
> (load "append2.ss")

> (define L1 '(1 2))

> (define L2 '(a b))

> (define L3 (append2 L1 L2))

> L3

(1 2 a b)

> L1

(1 2)

> L2

(a b)

> (require racket/trace)
> (trace append2)
> (append2 L1 L2)
>(append2 (1 2) (a b))
> (append2 (2) (a b))
> >(append2 () (a b))
< <(a b)

< (2 a b)
<(1 2 a b)
(1 2 a b)

Append does not modify its arguments. It makes
copies of all of the lists save the last.

Visualizing Append
> (load "append2.ss")

> (define L1 '(1 2))

> (define L2 '(a b))

> (define L3

(append2 L1 L2))

> L3

(1 2 a b)

> L1

(1 2)

> L2

(a b)

> (eq? (cdr (cdr L3) L2)

#f

VAR VALUE

…

L2

L1

L3

…

environment

a b

1 2

Append2 copies the top level of its
first list argument, L1

http://docs.racket-lang.org/srfi-std/srfi-1.html?q=copy-list#list-copy
http://docs.racket-lang.org/reference/pairs.html?q=append&q=apend(def._((quote._~23~25kernel)._append))

5

List access functions

• To find the element at a given position in a list
use the function list-ref (nth in CL)

> (list-ref ‘(a b c) 0)

a

• To find the nth cdr, use list-tail (nthcdr in CL)

> (list-tail ‘(a b c) 2)

(c)

• Both functions are zero indexed

List-ref and list-tail

> (define L '(a b c d))

> (list-ref L 2)

c

> (list-ref L 0)

a

> (list-ref L -1)
list-ref: expects type <non-negative
exact integer> as 2nd arg, given: -1;
other arguments were: (a b c d)

> (list-ref L 4)
list-ref: index 4 too large for list: (a b
c d)

> (list-tail L 0)

(a b c d)

> (list-tail L 2)

(c d)

> (list-tail L 4)

()

> (list-tail L 5)
list-tail: index 5 too large for list: (a b
c d)

Defining Scheme’s list-ref & list-tail
(define (mylist-ref l n)

(cond ((< n 0) (error...))
((not (pair? l)) (error...))
((= n 0) (car l))
(#t (mylist-ref (cdr l) (- n 1)))))

(define (mylist-tail l n)
(cond ((< n 0) (error...))

((not (pair? l)) (error...))
((= n 0) l)
(#t (mylist-tail (cdr l) (- n 1)))))

Accessing lists

• Scheme’s last returns the last element in a list
> (define (last l)

(if (null? (cdr l))
(car l)
(last (cdr l))))

(last ‘(a b c))
c

• Note: in CL, last returns the last cons cell (aka pair)
• We also have: first, second, third, and CxR, where x is

a string of up to four as or ds.
–E.g., cadr, caddr, cddr, cdadr, …

Member
• Member returns true, but instead of simply

returning t, its returns the part of the list
beginning with the object it was looking for.

> (member ‘b ‘(a b c))

(b c)

• member compares objects using equal?

• There are versions that use eq? and eqv?
And that take an arbitrary function

Recall: defining member

(define (member X L)

(cond ((null? L) #f)

((equal? X (car L)) L)

(#t (member X (cdr L)))))

http://docs.racket-lang.org/reference/pairs.html?q=list-ref(def._((quote._~23~25kernel)._list-ref))
http://docs.racket-lang.org/reference/pairs.html?q=list-tail&q=list-ref(def._((quote._~23~25kernel)._list-tail))
http://en.wikipedia.org/wiki/Zero-based_numbering

6

Memf
• If we want to find an element satisfying an

arbitrary predicate we use the function
memf:
> (memf odd? ‘(2 3 4))
(3 4)

• Which could be defined like:
(define (memf f l)

(cond ((null? l) #f)
((f (car l)) l)
(#t (memf f (cdr l)))))

Dotted pairs and lists

• Lists built by calling list are known as proper lists;
they always end with a pointer to null

A proper list is either the empty list, or a pair whose cdr
is a proper list

• Pairs aren’t just for building lists, if you need a
structure with two fields, you can use a pair

• Use car to get the 1st field and cdr for the 2nd
> (define the_pair (cons ‘a ‘b))
(a . b)

• Because this pair is not a proper list, it’s displayed
in dot notation

In dot notation the car and cdr of each pair are
shown separated by a period

Dotted pairs and lists

• A pair that isn’t a proper list
is called a dotted pair

Remember that a dotted pair
isn’t really a list at all, It’s a just
a two part data structure

• Doted pairs and lists that end with a dotted pair
are not used very often

• If you produce one for 331 code, you’ve probably
made an error

a b

(a . b)

Conclusion

• Simple linked lists were the only data
structure in early Lisps

– From them you can build most other data
structures though efficiency may be low

• Its still the most used data structure in Lisp
and Scheme

– Simple, elegant, less is more

• Recursion is the natural way to process lists

