$$
\begin{aligned}
& \text { Bottom Up } \\
& \text { Parsing }
\end{aligned}
$$

Motivation

- In the last lecture we looked at a table driven, top-down parser
-A parser for LL(1) grammars
- In this lecture, we'll look a a table driven, bottom up parser
-A parser for LR(1) grammars
- In practice, bottom-up parsing algorithms are used more widely for a number of reasons

Right Sentential Forms

- Recall the definition of a derivation and a rightmost derivation

$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$

 $5 \mathrm{~F} \rightarrow$ (E)
$6 \mathrm{~F} \rightarrow$ id

- Each of the lines is a (right) sentential form
- A form of the parsing problem is finding the correct RHS in a rightsentential form to reduce to sentential form to redu
get the previous rightget the previous right-
sentential form in the sentential f
derivation

E E+T $\mathrm{E}+\mathrm{T} * \mathrm{~F}$ $\mathrm{E}+\mathrm{T} * \mathrm{id}$ $\mathrm{E}+\mathrm{F} * \mathrm{id}$ E+id*id
 $\frac{\mathrm{T}}{\mathrm{T}+1 \mathrm{~d} * i d}$ $\frac{\mathrm{F}}{\mathrm{F}+\mathrm{id} * \mathrm{id}}$
$\underline{\mathrm{id}+\mathrm{id} * \mathrm{id}}$

Right Sentential Forms
 Consider this example

- We start with id+id*id
- What rules can apply to some portion of this sequence?
-Only rule 6: F -> id
- Are there more than one way to apply the rule?
- Yes, three
- Apply it so the result is part of a "right most derivation"
- If there is a derivation, there is a right most one
- If we always choose that, we can't get into trouble
get into trouble

```
1 E -> E+T
2 E l> T
3 T -> T*F
lum T F F
6 F -> id
```

 E
 E
 F+id*id
 E+id id
 $\underline{i d}+i d * i d$

Bottom up parsing

- A bottom up parser looks at a sentential form and selects a contiguous sequence of symbols that matches the RHS of a grammar rule, and replaces it with the LHS
- There might be several choices, as in the
 sentential form $\mathrm{E}+\mathrm{T} * \mathrm{~F}$
-Which one should we choose?

Bottom up parsing

- If the wrong one is chosen, it leads to failure
-E.g.: replacing $\mathrm{E}+\mathrm{T}$ with E in $\mathrm{E}+\mathrm{T} * \mathrm{~F}$ yields $\mathrm{E}+\mathrm{F}$, which can't be further reduced using the given grammar
-The handle of a sentential form is the RHS that should be rewritten to yield the next sentential form in the right most derivation

Sentential forms

-Think of a sentential form
as one of the entries in
derivation that begins
with the start symbol and
ends with a legal sentence

- It's like a sentence but it may have unexpanded non-terminals
-We can also think of it as a parse tree where some leaves are as yet unexpanded nonterminals

$E \rightarrow E+T$ $E \rightarrow T$	E	
$T \rightarrow$	T	
:---		
5	$5 \boldsymbol{F} \rightarrow(E)$ 6 F \rightarrow id E $\underline{E+T}$ $\underline{E+T^{*} F}$ $E+T^{*}$ $E+F *$ id $E+\underline{\overline{i d}} * i d$ $\underline{T}+\mathrm{id} * \mathrm{id}$ $\underline{F}+\mathrm{id} *$ id $\stackrel{F}{\mathrm{~F}}+\mathrm{id}+\mathrm{id} *_{\mathrm{i}}$	

Phrases, simple phrases and handles

- Def: β is the handle of the right sentential form $\gamma=\alpha \beta w$ if and only if $S=>_{r m} \alpha A w={ }_{r m} \alpha \beta w$
- Def: β is a phrase of the right sentential form γ if and only if $S=>^{*} \gamma=\alpha_{1} A \alpha_{2}=>+\alpha_{1} \beta \alpha_{2}$
- Def: β is a simple phrase of the right sentential form γ if and only if $S=>^{*} \gamma=\alpha_{1} A \alpha_{2} \Rightarrow \alpha_{1} \beta \alpha_{2}$
- The handle of a right sentential form is its leftmos simple phrase
- Given a parse tree, it is now easy to find the handle
- Parsing can be thought of as handle pruning

Handles

- A handle of a sentential form is a substring α such that $-\alpha$ matches the RHS of some production A -> α; and replacing α by the LHS A represents a step in the reverse of a rightmost derivation of s.
For this grammar, the rightmost 2: A $->\mathrm{Abc}$ 3: A \rightarrow b
4: \rightarrow B derivation for the input abbcde is
$\mathrm{S} \Rightarrow \mathrm{aABe} \Rightarrow>$ aAde $=>$ aAbcde $\Rightarrow>$ abbcde

4: B $->$ d

- The string aAbcde can be reduced in two ways:
(1) aAbcde $\Rightarrow>$ aAde (using rule 2)
(2) aAbcde $\Rightarrow>$ abbcBe (using rule 4)
- But (2) isn't a rightmost derivation, so Abc is the only handle.
- Note: the string to the right of a handle will only contain terminals (why?)

$$
\mathrm{a} \mathrm{Abc} \mathrm{de}
$$

Phrases

- A phrase is a subsequence of a sentential form that is eventually "reduced" to a single non-terminal.

- A simple phrase is a phrase that is reduced in a single step.
- The handle is the leftmost simple phrase.

For sentential form $\mathrm{E}+\mathrm{T} *$ id what are the phrases: $\mathrm{E}+\mathrm{T}$ *id,
T*id, id simple phrases: id handle: id
\qquad

On to shift-reduce parsing

- How to do it w/o having a parse tree in front of us?
- Look at a shift-reduce parser - the kind that yacc uses
- A shift-reduce parser has a queue of input tokens \& an initially empty stack. It takes one of 4 possible actions:
-Accept: if the input queue is empty and the start symbol is the only thing on the stack
-Reduce: if there is a handle on the top of the stack,
pop it off and replace it with the rule's LHS
-Shift: push the next input token onto the stack
Fail: if the input is empty and we can't accept
- In general, we might have a choice of (1) shift, (2) reduce, or (3) maybe reducing using one of several rules
- The algorithm we next describe is deterministic

Shift-Reduce Algorithms

A shift-reduce parser scans input, at each step decides to: -Shift next token to top of parse stack (along with state info) or
-Reduce the stack by POPing several symbols off the stack (\& their state info) and PUSHing the corresponding non-terminal (\& state info)

Shift-Reduce Algorithms

The stack is always of the form

- A reduction step is triggered when we see the symbols corresponding to a rule's RHS on the top of the stack bottom

LR parser table

LR shift-reduce parsers can be efficiently implemented by precomputing a table to guide the processing

When to shift, when to reduce

- Key problem in building a shift-reduce parser is deciding whether to shift or to reduce
- repeat: reduce if a handle is on top of stack, shift otherwise - Succeed if there is only S on the stack and no input
- A grammar may not be appropriate for a LR parser because there are conflicts which can not be resolved
- Conflict occurs when the parser can't decide whether to: - shift or reduce the top of stack (a shift/reduce conflict), or - reduce the top of stack using one of two possible productions (a reduce/reduce conflict)
- There are several varieties of LR parsers (LR $(0), \operatorname{LR}(1), \operatorname{SLR}$
and LALR), with differences depending on amount and LALR), with differences depending on amount of lookahead and on construction of the parse table

Conflicts

Shift-reduce conflict: can't decide whether to shift or to reduce

- Example : "dangling else"

Stmt -> if Expr then Stmt \mid if E
$\mid \ldots$

What to do when else is at the front of the input? Reduce-reduce conflict: can't decide which of several possible reductions to make
Example
Stmt -> id (params)
| Expr := Expr
$\stackrel{. .}{ }$
id (params)
Given the input $\mathrm{a}(1, \mathrm{j})$ the parser does not know whether it is a procedure call or an array reference

LR Table

- An LR configuration stores the state of an LR parser $\left(\mathrm{S}_{0} \mathrm{X}_{1} \mathrm{~S}_{1} \mathrm{X}_{2} \mathrm{~S}_{2} \ldots \mathrm{X}_{\mathrm{m}} \mathrm{S}_{\mathrm{m}}, \mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}+1} \ldots \mathrm{a}_{\mathrm{n}} \$\right)$
- LR parsers are table driven, where the table has two components, an ACTION table and a GOTO table
- The ACTION table specifies the action of the parser (shift or reduce) given the parser state and next token
- Rows are state names; columns are terminals
- The GOTO table specifies which state to put on top of the parse stack after a reduce
-Rows are state names; columns are non-terminals

Example		
Stack	Input	action
0	Id + id * id s	Shift 5
0 id 5	+ id * id \$	Reduce 6 goto ($0, F$)
0 F 3	+ id * id \$	Reduce 4 goto (0, T)
0 T 2	+ id * id s	Reduce 2 goto ($0, E$)
0 E 1	+ id * id \$	Shift 6
$0 \mathrm{E} 1+6$	id * id \$	Shift 5
$0 \mathrm{E} 1+6 \mathrm{id} 5$	* id \$	Reduce 6 goto ($6, F$)
$0 \mathrm{E} 1+6 \mathrm{F3}$	* id \$	Reduce 4 goto ($6, T$ T)
0E1+6T9	* id \$	Shift 7
0E1+6T9*7	id \$	Shift 5
0E1+6T9*7id 5	\$	Reduce 6 goto ($7, E$)
0E1+6T9*7F10	\$	Reduce 3 goto (6, T)
0E1+6T9	\$	Reduce 1 goto ($0, E$)
0 El	s	Accept

	Action										
State	id	+	$*$	()	S	E	T	F		
0	S5		S4				1	2	3		
1		S6				accept					
2		R2	S7		R2	R2					
3		R4	R4		R4	R4					
4	S5			S4			8	2	3		
5		R6	R6		R6	R6					
6	S5			S4				9	3		
7	S5			S4					10		
8		S6			S11						
9		R1	S7		R1	R1					
10		R3	R3		R3	R3					
11		R5	R5		R5	R5					

