

Parsing

- A grammar describes syntactically legal strings in a language
- A recogniser simply accepts or rejects strings
- · A generator produces strings
- A parser constructs a parse tree for a string
- Two common types of parsers:
 - -bottom-up or data driven
 - -top-down or hypothesis driven
- A *recursive descent parser* easily implements a top-down parser for simple grammars

Top down vs. bottom up parsing

- The parsing problem is to connect the root node S with the tree leaves, the input
- **Top-down parsers:** starts constructing the parse tree at the top (root) and move A = 1 + 3 * 4/5down towards the leaves. Easy to implement by hand, but requires restricted grammars. E.g.:
 - Predictive parsers (e.g., LL(k))
- **Bottom-up parsers:** build nodes on the bottom of the parse tree first. Suitable for automatic parser generation, handles larger class of grammars. E.g.:
 - shift-reduce parser (or LR(k) parsers)

Top down vs. bottom up parsing

- Both are general techniques that can be made to work for all languages (but not all grammars!)
- Recall that a given language can be described by several grammars
- · Both of these grammars describe the same language

 $E \rightarrow Num + E$

E -> Num

 $E \rightarrow E + Num$ E -> Num

- The first one, with it's left recursion, causes problems for top down parsers
- For a given parsing technique, we may have to transform the grammar to work with it

Parsing complexity

- · How hard is the parsing task? How to we measure that?
- Parsing an arbitrary CFG is $O(n^3)$ -- it can take time proportional the cube of the number of input symbols
 - This is bad! (why?)
- If we constrain the grammar somewhat, we can always parse in <u>linear</u> time. This is good! (why?)
- Linear-time parsing
 - LL parsers
 - Recognize LL grammar
 - Use a top-down strategy
 - LR parsers
 - Recognize LR grammar
 - Use a bottom-up strategy
- LL(n) : Left to right, Leftmost derivation, look ahead at most n symbols.
 LR(n) : Left to right,
- Right derivation, look ahead at most n symbols.

Top Down Parsing Methods Simplest method is a full-backup, *recursive descent* parser Often used for parsing simple languages

- Write recursive recognizers (subroutines) for each grammar rule
 - -If rules succeeds perform some action (i.e., build a tree node, emit code, etc.)
 - -If rule fails, return failure. Caller may try another choice or fail
 - -On failure it "backs up"

Top Down Parsing Methods: Problems

- When going forward, the parser consumes tokens from the input, so what happens if we have to back up?
 - -suggestions?
- Algorithms that use backup tend to be, in general, inefficient
 - There might be a large number of possibilities to try before finding the right one or giving up
- Grammar rules which are left-recursive lead to non-termination!

Recursive Decent Parsing: Example

For the grammar:

```
<term> -> <factor> { (*|/) <factor> }*
```

We could use the following recursive descent parsing subprogram (this one is written in C)

```
void term() {
  factor();   /* parse first factor*/
  while (next_token == ast_code ||
        next_token == slash_code) {
     lexical();   /* get next token */
     factor();   /* parse next factor */
   }
}
```

Problems

- Some grammars cause problems for top down parsers
- Top down parsers do not work with leftrecursive grammars
 - E.g., one with a rule like: E -> E + T
 - We can transform a left-recursive grammar into one which is not
- A top down grammar can limit backtracking if it only has one rule per non-terminal
 - The technique of rule factoring can be used to eliminate multiple rules for a non-terminal

Left-recursive grammars

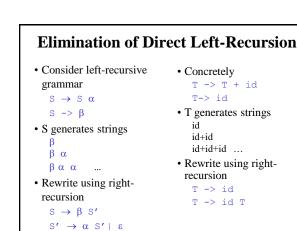
- A grammar is left recursive if it has rules like
 - X -> X β
- Or if it has indirect left recursion, as in $\chi \rightarrow A \beta$
 - A -> X
- Q: Why is this a problem?
 - -A: it can lead to non-terminating recursion!

Direct Left-Recursive Grammars

• Consider

```
E -> E + Num
```

- E -> Num
- We can manually or automatically rewrite a grammar removing leftrecursion, making it ok for a top-down parser.



General Left Recursion

• The grammar

 $S \mathop{\rightarrow} A \alpha \, | \, \delta$

 $A \rightarrow S \beta$

is also left-recursive because

$$S \rightarrow^+ S \beta o$$

where \rightarrow^+ means "can be rewritten in one or more steps"

• This indirect left-recursion can also be automatically eliminated (*not covered*)

Summary of Recursive Descent

- Simple and general parsing strategy

 Left-recursion must be eliminated first
 ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by further restricting the grammar to allow us to successfully *predict* which rule to use

Predictive Parsers

- That there can be many rules for a non-terminal makes parsing hard
- A *predictive parser* processes the input stream typically from left to right
- Is there any other way to do it? Yes for programming languages!
- It uses information from peeking ahead at the *upcoming terminal symbols* to decide which grammar rule to use next
- And *always* makes the right choice of which rule to use
- How much it can peek ahead is an issue

Predictive Parsers

- An important class of predictive parser only peek ahead one token into the stream
- An *LL*(*k*) parser, does a Left-to-right parse, a Leftmost-derivation, and k-symbol lookahead
- Grammars where one can decide which rule to use by examining only the *next* token are **LL(1)**
- LL(1) grammars are widely used in practice
 The syntax of a PL can usually be adjusted to enable it to be described with an LL(1) grammar

Predictive Parser

Example: consider the grammar

,	$S \rightarrow \mathbf{if} \ E \ \mathbf{then} \ S \ \mathbf{else} \ S$
	$S \rightarrow begin S L$
	$S \rightarrow \mathbf{print} E$
	$L \rightarrow end$
	$L \rightarrow ; SL$
	$E \rightarrow \text{num} = \text{num}$

An S expression starts either with an IF, BEGIN, or PRINT token, and an L expression start with an END or a SEMICOLON token, and an E expression has only one production.

Remember...

- Given a grammar and a string in the language defined by the grammar ...
- There may be more than one way to *derive* the string leading to the *same parse tree*
- It depends on the order in which you apply the rules
- -And what parts of the string you choose to rewrite next
- All of the derivations are valid
- To simplify the problem and the algorithms, we often focus on one of two simple derivation strategies
- A leftmost derivation
- -A rightmost derivation

<u>LL(k)</u> and **<u>LR(k)</u>** parsers

- Two important parser classes are LL(k) and LR(k)
- The name LL(k) means:
- L: Left-to-right scanning of the input
- L: Constructing *leftmost derivation*
- k: max # of input symbols needed to predict parser action
- The name LR(k) means:
- L: Left-to-right scanning of the input
- R: Constructing rightmost derivation in reverse
- k: max # of input symbols needed to select parser action
- A LR(1) or LL(1) parser never need to *"look ahead"* more than *one* input token to know what parser production rule applies

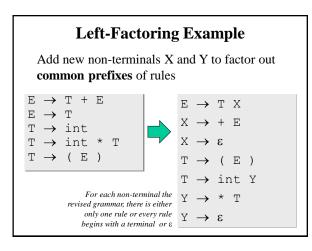
Predictive Parsing and Left Factoring

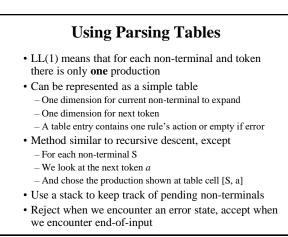
Consider the grammar

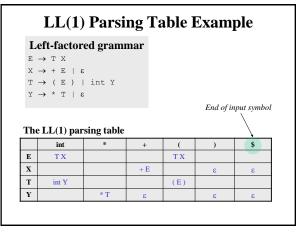
- $T \rightarrow int$
- ${\rm T}$ \rightarrow int * ${\rm T}$
- ${\rm T}$ \rightarrow (${\rm E}$)
- removed, a grammar may not be parsable with a LL(1) parser

Even if left recursion is

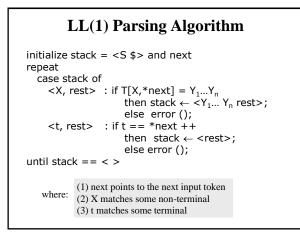
- Hard to predict because
 - For T, two productions start with int
 - For E, it is not clear how to predict which rule to use
- Must **left-factor** grammar before use for predictive parsing
- Left-factoring involves rewriting rules so that, if a nonterminal has > 1 rule, <u>each</u> begins with a **terminal**







·Consi	l) Pars	sing Ta	ble E	xam	ple = - x - y -	 T X + E ε (E) : * T ε 	int Y
		non-terminal i					
		duction that c		· ·	•		
	ider the [Y, -		0				
		non-terminal i	s Y and cu	rrent toker	is +. get rie	d of Y"	
		ed by + only i					
	ider the [E, *				- / -		
		cate error situat	tions				
-"Tl	nere is no wa	y to derive a s	string starting	ng with * f	from non-te	rminal E"	
		5	0	0			
							1
	int	*	+	()	\$	
Е	ТХ			ΤX			
X			+ E		3	3	
Т	int Y			(E)			
Y		* T	3		3	3	



Stack		Input		Action			
Е\$	i	Int * int	Ş	pop();push(T X)			
тх\$	i	Int * int	Ş	<pre>pop();push(int Y)</pre>			
int Y 2	к\$ і	Int * int	Ş	pop();next++			
Y X \$	7	int \$		<pre>pop();push(* T)</pre>			
* T X 3	\$ *	'int \$		<pre>pop();next++</pre>			
тх\$	i	int \$		<pre>pop();push(int Y) pop();next++;</pre>			
int Y 3	KŞ i	int \$					
Y X \$	ş	3		pop () pop ()			
Х \$	ş	3					
Ş	Ş	3		ACCEPT!			
ĸ	int	*	+	()	\$	
Е	ΤX			ТХ			
E) X			+ E		3	3	
Т	int Y			(E)			
r Y		* T	3		3	3	

Constructing Parsing Tables

- No table entry can be multiply defined
- If $A \rightarrow \alpha$, where in the line of A do we place α ?
- In column t where t can start a string derived from $\boldsymbol{\alpha}$
 - $\alpha \rightarrow^* t \beta$
 - We say that $t \in First(\alpha)$
- \bullet In the column t if α is ϵ and t can follow an A
 - $\bullet\:S\to^*\beta\:A\:t\:\delta$
 - We say $t \in Follow(A)$

Computing First Sets

Definition: First(X) = {t| $X \rightarrow^* t\alpha$ } \cup { ϵ | $X \rightarrow^* \epsilon$ }

Algorithm sketch (see book for details):

- 1. for all terminals t do First(t) \leftarrow { t }
- 2. for each production $X \to \varepsilon$ do First(X) $\leftarrow \{ \varepsilon \}$
- 3. if $X \to A_1 \dots A_n \alpha$ and $\epsilon \in First(A_i)$, $1 \le i \le n$ do add First(α) to First(X)
- 4. for each $X \to A_1 \dots A_n$ s.t. $\epsilon \in First(A_i), 1 \le i \le n$ do add ϵ to First(X)
- 5. repeat steps 4 and 5 until no First set can be grown

First Sets. Example

```
 \begin{array}{ll} \mbox{Recall the grammar} \\ E \rightarrow T X & X \rightarrow + E \mid \epsilon \\ T \rightarrow (E) \mid \mbox{int } Y & Y \rightarrow * T \mid \epsilon \\ \end{array} \\ \label{eq:First sets} \\ \mbox{First( ) = { ( } & \mbox{First( T ) = { int, ( } } \\ \mbox{First( ) ) = { ) } & \mbox{First( E ) = { int, ( } } \\ \mbox{First( int) = { int } } & \mbox{First( X ) = { +, \epsilon } } \\ \mbox{First( + ) = { + } & \mbox{First( Y ) = { *, \epsilon } } \\ \mbox{First( * ) = { * } } \end{array}
```

Computing Follow Sets

• Definition:

 $Follow(X) = \{ t \mid S \rightarrow^* \beta X t \delta \}$

- Intuition
 - If S is the start symbol then $\{ \in Follow(S) \}$
 - If $X \rightarrow A B$ then $First(B) \subseteq Follow(A)$ and
 - $Follow(X) \subseteq Follow(B)$
 - Also if $B \rightarrow^* \epsilon$ then Follow(X) \subseteq Follow(A)

Computing Follow Sets

Algorithm sketch:

- 1. Follow(S) \leftarrow { \$ }
- 2. For each production $A \rightarrow \alpha X \beta$ • add $First(\beta) - \{\epsilon\}$ to Follow(X)
- 3. For each $A \rightarrow \alpha X \beta$ where $\varepsilon \in First(\beta)$ • add Follow(A) to Follow(X)
- repeat step(s) ____ until no Follow set grows

Follow Sets. Example

- Recall the grammar $E \rightarrow T X$ $T \rightarrow (E) \mid int Y$
- · Follow sets
 - $Follow(+) = \{ int, (\} Follow(*) = \{ int, (\} \}$ Follow(() = { int, (} Follow(E) = {), \$} Follow(X) = $\{$, $\}$
 - Follow(**T**) = $\{+, \}, \{+, \}$

 $X \to + \, E \mid \epsilon$

 $Y \to * \; T \; | \; \epsilon$

- Follow()) = $\{+, \},$ Follow(Y) = $\{+, \},$
- Follow(int) = $\{*, +, \}, \{*\}$

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do • T[A, t] = α
 - If $\varepsilon \in \text{First}(\alpha)$, for each $t \in \text{Follow}(A)$ do • $T[A, t] = \alpha$
 - If $\varepsilon \in \text{First}(\alpha)$ and $\$ \in \text{Follow}(A)$ do • $T[A, \$] = \alpha$

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
- Reasons why a grammar is not LL(1) include -G is ambiguous
 - -G is left recursive
- -G is not left-factored
- Most programming language grammars are not strictly LL(1)
- There are tools that build LL(1) tables

Bottom-up Parsing

- YACC uses bottom up parsing. There are two important operations that bottom-up parsers use: shift and reduce
 - In abstract terms, we do a simulation of a Push Down Automata as a finite state automata
- Input: given string to be parsed and the set of productions.
- Goal: Trace a rightmost derivation in reverse by starting with the input string and working backwards to the start symbol