Thinking about grammars

- Consider an expression language involving integers 1, 2 and 3 and the +operator
- These rules make the + operator left associative <e> ::= <int> | <e> + <int> <int> ::=1|2|3
- Note that using the " \mid " notation obscures the fact that there are really five rules

$$
\begin{array}{ll}
<e>::=<\text { int }> & \text { <int }>::=1 \\
<e>::=<e>+ \text { <int }> & <\text { int }>::=2 \\
& \text { <int }>::=3
\end{array}
$$

A graphical view

- Each rule is a little tree with a non-terminal as its root and children which are non-terminals or terminals
- Here's how we we might visualize the grammar using ovals for non-terminals and strings as terminals

Generating a string \& parse tree

- Create a parse tree P consisting of the node
- Repeat until P has no non-terminals leaf nodes
- Select a leaf node L that is a non-terminal
- Select a grammar tree T that has the same
non-terminal as its root and make a copy of it
- Replace the leaf L in P with the copy of T

