3
 Syntax

Some Preliminaries

- For the next several weeks we'll look at how one can define a programming language
-What is a language, anyway?
"Language is a system of gestures, grammar, signs, sounds, symbols, or words, which is used to represent and communicate concepts, ideas, meanings, and thoughts"
- Human language is a way to communicate representations from one (human) mind to another
- What about a programming language?

A way to communicate representations (e.g., of data or a procedure) between human minds and/or machines

Introduction

We usually break down the problem of defining a programming language into two parts

- defining the PL's syntax
- defining the PL's semantics

Syntax - the form or structure of the expressions, statements, and program units
Semantics - the meaning of the expressions statements, and program units
Note: There is not always a clear boundary between the two

Why and How

Why? We want specifications for several communities:

- Other language designers
- Implementers
- Machines?
- Programmers (the users of the language)

How? One ways is via natural language descriptions (e.g., user's manuals, text books) but there are a number of more formal techniques for specifying the syntax and semantics

Syntax Overview

- Language preliminaries
- Context-free grammars and BNF
- Syntax diagrams

Introduction

A sentence is a string of characters over some alphabet (e.g., def add1(n): return $n+1$)
A language is a set of sentences
A lexeme is the lowest level syntactic unit of a language (e.g., *, add1, begin)

A token is a category of lexemes (e.g., identifier)
Formal approaches to describing syntax:

- Recognizers - used in compilers
- Generators - what we'll study

Lexical Structure of Programming Languages

- The structure of its lexemes (words or tokens) -token is a category of lexeme
- The scanning phase (lexical analyser) collects characters into tokens
- Parsing phase (syntactic analyser) determines syntactic structure

Formal Grammar

- A (formal) grammar is a set of rules for strings in a formal language
- The rules describe how to form strings from the language's alphabet that are valid according to the language's syntax
- A grammar does not describe the meaning of the strings or what can be done with them in whatever context - only their form

Adapted from Wikipedia

Grammars

Context-Free Grammars

- Developed by Noam Chomsky in the mid1950s.
- Language generators, meant to describe the syntax of natural languages.
- Define a class of languages called context-free languages.

Backus Normal/Naur Form (1959)

- Invented by John Backus to describe Algol 58 and refined by Peter Naur for Algol 60.
- BNF is equivalent to context-free grammars

NOAM CHOMSKY,
MIT Institute Professo MIT Institute Professor Professor of Linguistic
Linguistic Theory, Syntax, Semantics,
Philosophy of Langu Philosophy of Language
-Chomsky \& Backus independently came up with equiv-
alent formalisms for specifying the syntax of a language

- Backus focused on a practical way of specifying an
artificial language, like Algol
Chomsky made fundamental contributions to mathehuman languages.

BNF (continued)

A metalanguage is a language used to describe another language.

In BNF, abstractions are used to represent classes of syntactic structures -- they act like syntactic variables (also called nonterminal symbols), e.g.
while_stmt> ::= while <logic_expr> do <stmt>
This is a rule; it describes the structure of a while statemen

BNF

- A rule has a left-hand side (LHS) which is a single non-terminal symbol and a right-hand side (RHS), one or more terminal or non-terminal symbols
- A grammar is a finite, nonempty set of rules
- A non-terminal symbol is "defined" by its rules.
- A non-terminal can have more than one rule
- Multiple rules can be combined with the verticalbar (|) symbol (read as "or")
These two rules:
<value> : : $=$ <const>
<value> $:=$ <ident>
<value> ::= <ident>
are equivalent to this one:
<value> ::= <const> | <ident>

Non-terminals, pre-terminals \& terminals

- A non-terminal symbol is any symbol that is in the LHS of a rule. These represent abstractions in the language (e.g., if-then-else-statement in
<if-then-else-statement> ::= if <test> then <statement> else <statement>
- A terminal symbol is any symbol that is not on the LHS of a rule. AKA lexemes. These are the literal symbols that will appear in a program (e.g., if, then, else in rules above)
- A pre-terminal symbol is one that appears as a LHS of rule(s), but in every case, the RHSs consist of single terminal symbol, e.g., <digit> in
<digit> : : $=0$ | 1 | 2 | 3 ... 7 | 8 | 9

BNF

- Repetition is done with recursion
- E.g., Syntactic lists are described in BNF using recursion
- An <ident_list> is a sequence of one or more <ident>s separated by commas.

<ident_list> ::= <ident> |

<ident> , <ident_list>

BNF Example

Here is an example of a simple grammar for a subset of English
A sentence is noun phrase and verb phrase followed by a period.
<sentence> ::= <nounPhrase> <verbPhrase> .
<nounPhrase> ::= <article> <noun>
<article> ::= a | the
<noun> ::= man | apple | worm | penguin <verbPhrase> ::= <verb>|<verb> <nounPhrase> <verb> ::= eats | throws | sees | is

Derivations

- A derivation is a repeated application of rules, starting with the start symbol and ending with a sentence consisting of just all terminal symbols
- It demonstrates, or proves that the derived sentence is "generated" by the grammar and is thus in the language that the grammar defines
- As an example, consider our baby English grammar <sentence> ::= <nounPhrase><verbPhrase>. <nounPhrase> ::= <article><noun> <article> ::= a | the
<noun> ::= man | apple | worm | penguin <verbPhrase> ::= <verb> | <verb><nounPhrase> <verb> ::= eats | throws | sees | is

Derivation using BNF

Here is a derivation for "the man eats the apple." <sentence> -> <nounPhrase><verbPhrase>. <article><noun><verbPhrase>. the<noun><verbPhrase>
the man <verbPhrase>.
the man <verb><nounPhrase>.
the man eats <nounPhrase>.
the man eats <article> < noun>.
the man eats the <noun>.
the man eats the apple.

Derivation

Every string of symbols in the derivation is a sentential form

A sentence is a sentential form that has only terminal symbols
A leftmost derivation is one in which the leftmost nonterminal in each sentential form is the one that is expanded in the next step

A derivation may be either leftmost or rightmost or something else

Another BNF Example

<program> -> <stmts>

<stmts> -> <stmt>
| <stmt> ; <stmts>
<stmt> -> <var> = <expr>
<var> -> a < bla c d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const
Here is a derivation:
<program> => <stmts>
=> <var> = <expr>
=> a = <expr>
\Rightarrow a = <term> + <term>
=> a = <var> + <term>
$\Rightarrow \mathrm{a}=\mathrm{b}+$ <term
$\Rightarrow \mathrm{a}=\mathrm{b}+$ const

Finite and Infinite languages

- A simple language may have a finite number of sentences
- The set of strings representing integers between $10^{* *} 6$ and $+10^{* *} 6$ is a finite language
- A finite language can be defined by enumerating the sentences, but using a grammar might be much easier
- Most interesting languages have an infinite number of sentences
- Even very simple grammars may yield infinite languages

Is English a finite or infinite language?

- Assume we have a finite set of words
- Consider adding rules like the following to our previous "baby English" grammar
<sentence> ::= <sentence><conj><sentence>.
<conj> ::= and | or | because
- Hint: Whenever you see recursion in a BNF it's likely that the language is infinite.
-When might it not be?
-The recursive rule might not be reachable.

Parse Tree

A parse tree is a hierarchical representation of a derivation

Another Parse Tree

Derivations and Parse Trees

－Note that a unannotated derivation（i．e． just the sequence of sentential forms） contains some，but not all，information about the parse structure
－Sometimes，it＇s ambiguous which symbol was replaced
－Also note that a parse tree contains partial information about the derivation： specifically，what rules were applied，but not the order of application

Grammar

－A grammar is ambiguous if and only if （iff）it generates a sentential form that has two or more distinct parse trees
－Ambiguous grammars are，in general， very undesirable in formal languages
－Can you guess why？
－We can eliminate ambiguity by revising the grammar

Ambiguous English Sentences

－I saw the man on the hill with a telescope
－Time flies like an arrow； fruit flies like a banana
－Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo

An ambiguous grammar

Here is a simple grammar for expressions that is ambiguous

```
<e> -> <e> <op> <e>
<e> -> 1|2|3
<op> -> +|-|*|/
```

The sentence $1+2 * 3$ can lead to two different parse trees corresponding to $1+(2 * 3)$ and $(1+2) * 3$

Two derivations for $1+2 * 3$

〈e〉－＞〈e＞＜op＞〈e〉

```
<e> -> <e> <op> <e>
    -> 1 <op> <e>
```

 \(\rightarrow 1+\langle\mathrm{e}\rangle\)

$->1+2$ <op> $\langle e\rangle$
$\rightarrow 1+2 *\langle e\rangle$
$->1+2 *<e>$
$->1+2 * 3$

$\begin{aligned} \text {＜e＞} & \text {－＞}\langle\mathrm{e}\rangle \text {＜op＞}\langle\mathrm{e}\rangle \\ \text {－＞} & \text {＜e＞}\end{aligned}$
－＞＜e＞＜op＞＜e＞＜op＞＜e＞
$\rightarrow 1$＜op＞＜e＞＜op＞
\rightarrow $\rightarrow 1$＜op＞＜e＞＜op＞＜e＞
$\rightarrow 1+\langle$ e＞＜op＞＜e＞ $\rightarrow 1+$＜e＞＜op＞＜e＞
$\rightarrow 1+2$＜op＞ $\rightarrow 1+2$＜op＞
$\rightarrow 1+2 *$＜e＞
$->1+2 *$＜e
$->1+2 * 3$

The leaves of the trees are terminals and correspond to the sentence

Operators

- The traditional operator notation introduces many problems.
- Operators are used in
-Prefix notation: Expression (* $(+13) 2)$ in Lisp
-Infix notation: Expression $(1+3) * 2$ in Java
Postfix notation: Increment foo ++ in C
- Operators can have one or more operands
- Increment in C is a one-operand operator: foo++
-Subtraction in C is a two-operand operator: foo - bar
Conditional expression in C is a three-operand operators: (foo $==3 ? 0: 1$)

Operator notation

- So, how do we interpret expressions like

$$
\text { (a) } 2+3+4
$$

(b) $2+3 * 4$

- While you might argue that it doesn't matter for (a), it can for different operators ($2 * * 3 * * 4$) or when the limits of representation are hit (e.g., round off in numbers, e.g., $1+1+1+1+1+1+1+1+1+1+1+10^{* *} 6$)
- Concepts:
-Explaining rules in terms of operator precedence and associativity
-Realizing the rules in grammars

Operators: Precedence and Associativity

- Precedence and associativity deal with the evaluation order within expressions
- Precedence rules specify order in which operators of different precedence level are evaluated, e.g.: "*" Has a higher precedence that "+", so "*" groups more ightly than " +
- What is the results of $4 * 5 * * 6$?
- A language's precedence hierarchy should match our intuitions, but the result's not always perfect, as in this Pascal example: if $\mathrm{A}<\mathrm{B}$ and $\mathrm{C}<\mathrm{D}$ then $\mathrm{A}:=0$
- Pascal relational operators have lowest precedence! if $\mathrm{A}<\mathrm{B}$ and $\mathrm{C}<\mathrm{D}$ then $\mathrm{A}:=0$;

Operator Precedence: Precedence Table

Fortran	Pascal	c	Ada
		++, -- (post-inc, dec.)	
**	not	++, -- (pro-inc., dec.), ,+- (unary), \& (address of), *((contents of), ! (logical not), ${ }^{-}$(bit-wise not)	$\begin{aligned} & \text { abs (absolute } \\ & \text { value). } \\ & \text { not, } * \end{aligned}$
*, /	$\begin{aligned} & *,{ }^{\text {and }} \text {, div, mod, } \end{aligned}$	* (binary), /, \% (modnlo division)	*, $/$, mod, rem
+,	$+,- \text { (unary and }$ binary), or	+, - (binary)	+, - (mary)
		<<, >> (left and right bit shift)	$\begin{aligned} & +,-(\text { (binary }), \\ & \&(\text { (oncatenation) } \end{aligned}$
		$\langle\rangle,,<=,>=$ (inequality tests)	$\begin{aligned} & =, /=,\langle=,\rangle,\rangle= \\ & \text { (comparisons) } \end{aligned}$
.not.		$=$ =, 1= (equality tets)	

Operator Precedence: Precedence Table

* (bit-wis and)		
- (bit-wise exclusive or)		
1 (bit-wise inclusive or)		
.and.	ene (logical and)	and, or, xor (logical operators)
.or.	11 (logical or)	
$\begin{gathered} \text { equv., nequq. } \\ \text { fovical } \end{gathered}$?: (if... then...else)	
	, (sequencing)	

Operators: Associativity

- Associativity rules specify order in which operators of the same precedence level are evaluated
- Operators are typically either left associative or right associative.
- Left associativity is typical for +, - , * and /
- So A + B + C
- Means: $(A+B)+C$
- And not: $\mathrm{A}+(\mathrm{B}+\mathrm{C})$
- Does it matter?

Operators: Associativity

- For + and * it doesn't matter in theory (though it can in practice) but for - and / it matters in theory, too
- What should A-B-C mean?
$(A-B)-C \neq A-(B-C)$
-What is the results of $2 * * 3 * * 4$?
$-2 * *(3 * * 4)=2 * * 81=2417851639229258349412352$ $-(2 * * 3) * * 4=8 * * 4=4096$
- Languages diverge on this case:
- In Fortran, ${ }^{* *}$ associates from right-to-left, as in normally the case for mathematics
- In Ada, ${ }^{* *}$ doesn't associate; you must write the previous expression as $2 * *(3 * * 4)$ to obtain the expected answer

Associativity in C

- In C, as in most languages, most of the operators associate left to right

$$
a+b+c \Rightarrow(a+b)+c
$$

- The various assignment operators however associate right to left

$$
\text { = += -= *= } /=\%=\gg=\ll=\&=\wedge=1=
$$

- Consider $\mathrm{a}+=\mathrm{b}+=\mathrm{c}$, which is interpreted as $a+=(b+=c)$
- and not as
($\mathrm{a}+=\mathrm{b}$) $+=\mathrm{c}$
- Why?

Precedence and associativity in Grammar

If we use the parse tree to indicate precedence levels of the operators, we cannot have ambiguity

An unambiguous expression grammar:

$$
\begin{aligned}
& \text { <expr> -> <expr> - <term> | <term> } \\
& \text { <term> -> <term> / const | const }
\end{aligned}
$$

Grammar (continued)

Operator associativity can also be indicated by a grammar

```
<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)
```


An Expression Grammar

Here's a grammar to define simple arithmetic expressions over variables and numbers.

Exp $::=$ num	Here's another		
Exp $::=$ id	common notation		
Exp $::=$ UnOp Exp	variant where		
Exp $:=\operatorname{Exp}$ BinOp Exp	single quotes are		
Exp $::=$ '(${ }^{\text {Exp }}$ ')'	used to indicate terminal symbols		
UnOp ::= '+'	and unquoted		
UnOp : $=$ '-'	symbols are taken		
BinOp : = '+' \| -'	'*'	'/	as non-terminals.

A derivation

A derivation of $a+b * 2$ using the expression grammar:
Exp =>
// Exp ::= Exp BinOp Exp
Exp BinOp Exp $=>$ // Exp : := id
id BinOp Exp $=>\quad / /$ BinOp $::=$ '+'
id + Exp $=>$ // Exp ::= Exp BinOp Exp
id + Exp BinOp Exp $=>/ /$ Exp : := num
id + Exp BinOp num => // Exp ::= id
id + id BinOp num => // BinOp ::= '*
id + id * num
$\mathrm{a}+\mathrm{b} * 2$

A parse tree

A parse tree for $a+b * 2$.

Exp_				
1	1 \}			
Exp	Binop	Exp		
I	/	I	\backslash	
id	+ Exp	Binop	Exp	
I	I	।	I	
a	id	*	num	
	\\|		1	
	b		2	

A parse tree

Another possible parse tree for $a+b^{*} 2$

Precedence

- Precedence refers to the order in which operations are evaluated
- Usual convention: exponents > mult, div > add, sub
- Deal with operations in categories: exponents,
mulops, addops.
- A revised grammar that follows these conventions:

Associativity

- Associativity refers to the order in which two of the same operation should be computed
$\cdot 3+4+5=(3+4)+5$, left associative (all BinOps)
$\cdot 3^{\wedge} 4^{\wedge} 5=3^{\wedge}\left(4^{\wedge} 5\right)$, right associative
- Conditionals right associate but have a wrinkle: an else clause associates with closest $\operatorname{Exp}::=\operatorname{Exp}$
$\operatorname{Exp}::=$ Term
Term $::=$ Ten wut
Term ::= Factor
factor : := '(' + unmatched if

Factor ::= num | id
Mul0p ::= '*' | '
if a then if b then c else d
$=$ if a then (if b then c else d)

Adding associativity to the grammar

Adding associativity to the BinOp expression grammar

xp	= Exp AddOp Term
Exp	::= Term
rn	::= Term MulOp Factor
Term	::= Factor
Factor	::= '(' Exp ')'
Factor	::= num \| id
Addop	:: $=$ '+'
Mulop	::= '*' \| '/'

Example: conditionals

- Most languages allow two conditional forms, with and without an else clause:
- if $x<0$ then $x=-x$
- if $x<0$ then $x=-x$ else $x=x+1$
- But we'll need to decide how to interpret:
- if $x<0$ then if $y<0 x=-1$ else $x=-2$
- To which if does the else clause attach?
- This is like the syntactic ambiguity in attachment of prepositional phrases in English
- the man near a cat with a hat

Example: conditionals

- All languages use standard rule to determine which if expression an else clause attaches to
- The rule:
- An else clause attaches to the nearest if to its left that does not yet have an else clause
- Example:
- if $x<0$ then if $y<0 x=-1$ else $x=-2$
- if $x<0$ then if $y<0 x=-1$ else $x=-2$

Example: conditionals

- Goal: to create a correct grammar for conditionals.
- It needs to be non-ambiguous and the precedence is else with nearest unmatched if

Statement ::= Conditional | 'whatever'

Conditional ::= 'if' test 'then' Statement 'else' Statement

- The grammar is ambiguous. The second Conditional allows unmatched ifs to be Conditionals
-Good: if test then (if test then whatever else whatever) - Bad: if test then (if test then whatever) else whatever
- Goal: write a grammar that forces an else clause to attach to the nearest if w/o an else clause

Example: conditionals

The final unambiguous grammar
Statement ::= Matched | Unmatched
Matched ::= 'if' test 'then' Matched 'else' Matched
| 'whatever
Unmatched ::= 'if' test 'then' Statement
'if' test 'then' Matched 'else' Unmatched

Syntactic Sugar

- Syntactic sugar: syntactic features designed to make code easier to read or write while alternatives exist
- Makes the language sweeter for humans to use: things can be expressed more clearly, concisely, or in an alternative style that some prefer
- Syntactic sugar can be removed from language without effecting what can be done
- All applications of the construct can be systematically replaced with equivalents that don't use it
adapted from Wikipedia

Extended BNF

Syntactic sugar: doesn't extend the expressive power of the formalism, but does make it easier to use, i.e. more readable and more writable

- Optional parts are placed in brackets ([])
<proc_call> -> ident [(<expr_list>)]
-Put alternative parts of RHSs in parentheses and separate them with vertical bars
<term> -> <term> (+|-) const
-Put repetitions (0 or more) in braces ($\}$)
<ident> -> letter \{letter | digit\}

BNF vs EBNF

BNF:
<expr> -> <expr> + <term>

\| <expr> - <term>	
\| <term>	
<term> ->	<term> * <factor>
\| <term> \| <factor>	

| <term> / <factor>
| <factor>
EBNF:
<expr> -> <term> \{(+ | -) <term>\}
<term> -> <factor> \{(* | /) <factor>

Parsing

- A grammar describes the strings of tokens that are syntactically legal in a PL
- A recogniser simply accepts or rejects strings.
- A generator produces sentences in the language described by the grammar
- A parser construct a derivation or parse tree for a sentence (if possible)
- Two common types of parsers are: - bottom-up or data driven
- top-down or hypothesis driven
- A recursive descent parser is a way to implement a top-down parser that is particularly simple

Parsing complexity

- How hard is the parsing task?
- Parsing an arbitrary context free grammar is $\mathrm{O}\left(\mathrm{n}^{3}\right)$, e.g., it can take time proportional the cube of the number of symbols in the input. This is bad!
- If we constrain the grammar somewhat, we can always parse in linear time. This is good!
- Linear-time parsing

- LL parsers

» Recognize LL grammar
» Use a top-down strategy
-LR parsers
» Recognize LR grammar
» Use a bottom-up strategy

- LL(n) : Left to right Leftmost derivation, look ahead at most n symbols. - LR(n): Right derivation, look ahead at most n symbols

Parsing complexity

- How hard is the parsing task?
- Parsing an arbitrary context free grammar is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ in the worst case.
- E.g., it can take time proportional the cube of the number of symbols in the input
- So what?
- This is bad

Parsing complexity

- If it takes t_{1} seconds to parse your C program with n lines of code, how long will it take to take if you make it twice as long?
$-\operatorname{time}(\mathrm{n})=\mathrm{t}_{1}, \operatorname{time}(2 \mathrm{n})=2^{3 *}$ time (n)
- 8 times longer
- Suppose v3 of your code is has 10 n lines?
- 10^{3} or 1000 times as long
- Windows Vista was said to have $\sim 50 \mathrm{M}$ lines of code

Linear complexity parsing

- Practical parsers have time complexity that is linear in the number of tokens, i.e., $\mathrm{O}(\mathrm{n})$
- If v2.0 or your program is twice as long, it will take twice as long to parse
- This is achieved by modifying the grammar so it can be parsed more easily
- Linear-time parsing
- LL parsers
" Recognize UL Use a top-down strateg
- LR parsers
» Recognize LR grammar
» Use a bottom-up strategy
- LL(n) : Left to right Leftmost derivation, Leftmost derivation, look ahead at most symbols.
LR(n) : Left to right, Right derivation,
ahead at most n symbols

Recursive Decent Parsing

- Each nonterminal in the grammar has a subprogram associated with it; the subprogram parses all sentential forms that the nonterminal can generate
- The recursive descent parsing subprograms are built directly from the grammar rules
- Recursive descent parsers, like other topdown parsers, cannot be built from leftrecursive grammars (why not?)

Hierarchy of Linear Parsers

- Basic containment relationship
- All CFGs can be recognized by LR parser
- Only a subset of all the CFGs can be recognized by LL parsers

Recursive Decent Parsing Example

Example: For the grammar:
<term> -> <factor> $\{(* \mid /)<$ factor>\}
We could use the following recursive descent parsing subprogram (e.g., one in C)

$$
\begin{aligned}
& \text { void term() } \\
& \text { factor(); }
\end{aligned}
$$

factor() ; /* parse first factor*
while (next token $==$ ast_code I।
next token $==$ slash_code)
lexical (); /* get next token */ factor(); /* parse next factor */
, ${ }^{\text {\} }}$
!

The Chomsky hierarchy	uncomputable		$\underbrace{\text { complex }}_{\text {crude }} \mid$ hines. e anguages. ar or
	Turing machines	Phrase structure	
	Linear-bounded automata	Contextsensitive	
	Push-down automata	Context-free	
	Finite state automata	Regular	
-The Chomsky hierarchy has four types of langua	machinesand their associated grammars and m		
- They form a strict hierarchy; that is, regular languages < context-free languages < context-sensitive languages < recursively enumerable languages.			
-The syntax of computer languages are usually describable by regular or context free languages.			

Summary

- The syntax of a programming language is usually defined using BNF or a context free grammar
- In addition to defining what programs are syntactically legal, a grammar also encodes meaningful or useful abstractions (e.g., block of statements)
- Typical syntactic notions like operator precedence, associativity, sequences, optional statements, etc. can be encoded in grammars
- A parser is based on a grammar and takes an input string, does a derivation and produces a parse tree.

