

Versions of LISP

- Lisp is an old language with many variants
- Lisp is alive and well today
- Most modern versions are based on Common Lisp
- LispWorks is based on Common Lisp
- Scheme is one of the major variants
- The essentials haven't changed much

Recursion

- Recursion is essential in Lisp
- A recursive definition is a definition in which
- certain things are specified as belonging to the category being defined, and
- a rule or rules are given for building new things in the category from other things already known to be in the category.

Informal Syntax

- An atom is either an integer or an identifier.
- A list is a left parenthesis, followed by zero or more S-expressions, followed by a right parenthesis.
- An S-expression is an atom or a list.
- Example: (A(B 3) (C) (()))

Formal Syntax (approximate)

- <S-expression> ::=<atom>|<list>
- <atom>: $=$ <number>|<identifier>
- Sist $>::=(\langle S-e x p r e s s i o n s\rangle)$
- <S-expressions >::=<empty>
| SS-expressions ><S-expression>
- <number> : = <digit > | <number $>$ <digit >
- <ide ntifie r>::= string of printable characters, not including parentheses

T and NIL

- $\mathcal{N} I \mathcal{L}$ is the name of the empty list
- As a test, $\mathcal{N} I \mathcal{L}$ means "false"
- \mathcal{T} is usually used to mean "true," but...
- ...anything that isn't $\mathfrak{N} I \mathcal{L}$ is "true"
- $\mathcal{N} I \mathcal{L}$ is both an atom and a list - it's defined this way, so just accept it

Function calls and data

- A function call is written as a list
- the first element is the name of the function
- remaining elements are the arguments
- Example: ($\mathcal{F} \mathcal{A} \mathcal{B}$)
- calls function \mathcal{F} with arguments \mathcal{A} and \mathcal{B}
- Data is written as atoms or lists
- Example: $(\mathcal{F} \mathcal{A} \mathcal{B})$ is a list of three elements
- Do you see a problem here?

Quoting

- Is $(\mathcal{F} \mathscr{A} \mathcal{B})$ a call to \mathcal{F}, or is it just data?
- All literal data must be quoted (atoms, too)
- $(Q \mathcal{U C O} \mathcal{T} \mathcal{E}(\mathcal{F} \mathcal{A} \mathcal{B}))$ is the list $(\mathcal{F} \mathcal{A} \mathcal{B})$
- Q UOTE is a "special form"
- The arguments to a special form are not evaluated
- ' $(\mathcal{F} \mathscr{A} \mathcal{B})$ is another way to quote data
- There is just one single quote at the beginning
- It quotes one S-expression

Basic Functions

- $\subset \mathcal{A} R$ returns the head of a list
- $C D \mathcal{D}$ returns the tail of a list
- $\operatorname{CO} \mathcal{N} S$ inserts a new head into a list
- $\mathcal{E Q}$ compares two atoms for equality
- $\mathcal{A T O} \mathcal{M}$ tests if its argument is an atom

Other useful Functions

- $(\mathfrak{N U L L L} \mathcal{S})$ tests if S is the empty list
- (LISTPS) tests if \mathcal{S} is a list
- LIS T makes a list of its (evaluated) arguments
$-(\mathcal{L I S T}$ ' \mathcal{A} ' $(\mathcal{B} \mathcal{C})$ ' $\mathcal{D})$ returns $(\mathcal{A}(\mathcal{B} C) \mathcal{D})$
$-(\operatorname{LIST}(C D R '(\mathcal{A} \mathcal{B}))$ ' $\mathcal{C})$ returns $((\mathcal{B}) \mathcal{C})$
- $\mathfrak{A P P E N} \mathcal{D}$ concatenates two lists
$-\left(\mathcal{A P P E E N} \mathcal{D}{ }^{\prime}(\mathcal{A} \mathcal{B})\right.$ ' $\left.((X) \mathcal{Y})\right)$ returns $(\mathcal{A} \mathcal{B}(X) \mathcal{Y})$
- The $C \mathscr{A} \mathcal{R}$ of a list is the first thing in the list
- CAR is only defined for nonempty lists
$\underline{I f ~}\llcorner$ is
$\left(\begin{array}{lll}\mathcal{A} \mathcal{B} & C\end{array}\right)$
($\left.\left(\begin{array}{ll}x & y\end{array}\right) z\right)$
(() ())
() undefined
- The $C D \mathcal{D}$ of a list is what's left when you remove the $C \mathcal{A R}$
- $\subset \mathcal{D R}$ is only defined for nonempty lists
- The CDR of a list is always a list

CDR examples

If \mathcal{L} is
Then (CDR L) is
$\left(\begin{array}{lll}\mathcal{A} & \mathcal{B} & \mathrm{C}\end{array}\right)$
(\mathcal{B} C)
$\left.\left(\begin{array}{ll}x & y\end{array}\right) z\right)$
(Z)
(X)
(() ())
()
()
(())
undefined

CONS

- $\operatorname{CO} \mathcal{N} S$ takes two arguments
- The first argument can be any S-expression
- The second argument should be a list
- The result is a new list whose $C \mathcal{A} R$ is the first argument and whose $C D \mathcal{R}$ is the second
- Just move one parenthesis to get the result:

CONS examples

- $C O \mathcal{N} S$ puts together what $C A R$ and $C D R$ take apart

$\underline{\mathcal{L}}$	$\frac{(C \mathcal{A} \mathcal{L})}{(C D \mathcal{L} L)}$	$\frac{(C O \mathcal{N S}(C \mathcal{A R} \mathcal{L})(C D R L))}{(\mathcal{A} \mathcal{B} C)}$	\mathcal{A}

Dotted Pairs

- The second argument to $C O \mathcal{N} S$ should be a list
- If it isn't, you get a dotted pair
- $\operatorname{CO} \mathfrak{N} S$ of \mathscr{A} and \mathcal{B} is ($\mathscr{A} \cdot \mathcal{B})$
- We aren't using dotted pairs in this class
- If you get a dotted pair, it's because you gave $\operatorname{CO} \mathcal{N} S$ an atom as a second argument
- EQ tests whether two atoms are equal - Integers are a kind of atom
- $E Q$ is undefined for lists
- it might work for lists, it might not
- but it won't give you an error message
- As with any predicate, $\mathcal{E Q}$ returns either $\mathcal{N} I \mathcal{L}$ or something that isn't $\mathcal{N} I \mathcal{L}$

$\mathscr{A T O M}$

- $\mathfrak{A T O} \mathcal{M}$ takes any S-expression as an argument
- $\mathcal{A T O} \mathcal{M}$ returns "true" if the argument you gave it is an atom
- As with any predicate, $\mathscr{A} \mathcal{T} O \mathcal{M}$ returns either $\mathfrak{N} I \mathcal{L}$ or something that isn't $\mathcal{N} I \mathcal{L}$
- $\operatorname{CO} \mathfrak{N} \mathcal{D}$ implements the if...then...e lse if ...then...e ls e if ...then... control structure
- The arguments to a function are evaluated before the function is called
- This isn't what you want for $\operatorname{CO} \mathcal{N} \mathcal{D}$
- $\operatorname{CO} \mathcal{N} \mathcal{D}$ is a special form, not a function

Special forms

- A special form is like a function, but it evaluates the arguments as it needs them
- $\operatorname{CO} \mathcal{N} \mathcal{D}, Q \mathcal{H O} \mathcal{T E}$ and $\mathcal{D E F} \mathcal{H} \mathcal{N}$ are special forms
- You can define your own special forms
- We won't be defining special forms in this course

Form of the COND

(COND
(condition1 result1)
(condition2 result2)
(T) result $\mathcal{N})$)

Defining Functions

- (DEFUNKfunction_name parameter_list function_6ody)
- Example: Test if the argument is the empty list
- (DEFUNN NULLL (X)

$$
(\operatorname{CON} \mathcal{D}
$$

$\left(\begin{array}{ll}X & \mathcal{N} I L\end{array}\right)$
$\left(\begin{array}{ll}\mathcal{T} & \mathcal{T}\end{array}\right)$)

Example: MEMBER

- As an example we define $\mathcal{M E M E B E R}$ which tests whether an atom is in a list of atoms
- (DEFUN $\mathfrak{M E M B E R}(\mathcal{A} \mathcal{L A T})$

```
CONND
((\mathcal{NULL LATT) {NIL)}
((EEQ \mathscr{A (CAR\mathcal{LAT}}))\mathcal{T})
(\mathcal{T}}(\mathcal{NEMBERA
```

- $\mathfrak{M E M} \mathcal{M E} \mathcal{R}$ is typically a built-in function

Rules for Recursion

- Handle the base ("simplest") cases first
- Recur only with a "simpler" case
- "Simpler" = more like the base case
- Don't alter global variables (you can't anyway with the Lisp functions I've told you about)
- Don't look down into the recursion

Guidelines for Lisp Functions

- Unless the function is trivial, start with $\operatorname{CO} \mathcal{N} \mathcal{D}$.
- Handle the base case first.
- Avoid having more than one base case.
- The base case is usually testing for $\mathfrak{N} \mathcal{Z L L L}$.
- Do something with the $C \mathscr{A} \mathcal{R}$ and recur with the $C D R$

Example: UNION

(DEFUN $\mathcal{N N I O N (S E T 1 S E T 2) ~}$

$$
(\mathcal{C O N D}
$$

((NVULLSET1) SET2)

$$
((\mathcal{M E M B E R}(C \mathfrak{A R} S \mathcal{E T} 1) \mathrm{SET} 2)
$$

$$
(\mathcal{U N} I O \mathcal{N}(C D R S E T \text { 1) SET 2)) }
$$

$$
(\mathcal{T}(C O \mathcal{N} S(C A R S E T 1)
$$

$$
(\mathcal{U N} \text { I ON (CDRS ET 1) S ET 2)))) }
$$

Still more useful Functions

- ($\mathcal{L E N} G \mathcal{H} \mathcal{H} \mathcal{L}$) returns the length of list \mathcal{L}
- ($\mathbb{R A N D O} \mathcal{M} \mathcal{N}$), where \mathcal{N} is an integer, returns a random integer $>=0$ and $<\mathcal{N}$.

The End

