
3/22/2016

1

C Language III

CMSC 313

Sections 01, 02

Pointer Basics

Adapted from Richard Chang, CMSC 313 Spring 2013

What is a pointer ?

Adapted from Dennis Frey CMSC 313 Spring 2011

• pointer = memory address + type

– A pointer can contain the memory address of any variable type

– A primitive (int, char, float)

– An array

– A struct or union

– Dynamically allocated memory

– Another pointer

– A function

– There’s a lot of syntax required to create and use pointers

3/22/2016

2

Why Pointers?

Adapted from Dennis Frey CMSC 313 Spring 2011

• They allow you to refer to large data structures in a

compact way

• They facilitate sharing between different parts of programs

• They make it possible to get new memory dynamically as

your program is running

• They make it easy to represent relationships among data

items.

Pointer Caution

Adapted from Dennis Frey CMSC 313 Spring 2011

• Undisciplined use can be confusing and thus the source of subtle,

hard-to-find bugs.

– Program crashes

– Memory leaks

– Unpredictable results

• About as "dangerous" as memory addresses in assembly
language programming.

C Pointer Variables

Adapted from Dennis Frey CMSC 313 Spring 2011

• General declaration of a pointer

type *nameOfPointer ;

• Example:

int *ptr1 ;

• Notes:

• * = dereference

• "if I dereference ptr1, I have an int"

• name of pointer variable should indicate it is a pointer

• here x is pointer, y is NOT:

int *x, y;

3/22/2016

3

Pointer Operators

Adapted from Dennis Frey CMSC 313 Spring 2011

* = dereference

The * operator is used to define pointer variables and to

dereference a pointer. “Dereferencing” a pointer means to use

the value of the pointee.

& = address of

The & operator gives the address of a variable.

Recall the use of & in scanf()

Pointer Examples

Adapted from Dennis Frey CMSC 313 Spring 2011

int x = 1, y = 2;

int *ip; /* pointer to int */

ip = &x;

y = *ip;

*ip = 0;

*ip = *ip + 10;

*ip += 1;

(*ip)++;

ip++;

Pointer and Variable types

Adapted from Dennis Frey CMSC 313 Spring 2011

The type of a pointer and its pointee must match

int a = 42;

int *ip;

double d = 6.34;

double *dp;

ip = &a; /* ok -- types match */

dp = &d; /* ok */

ip = &d; /* compiler error -- type mismatch */

dp = &a; /* compiler error */

3/22/2016

4

More Pointer Code

Adapted from Dennis Frey CMSC 313 Spring 2011

int a = 1, *ptr1;

ptr1 = &a;

printf("a = %d, &a = %p, ptr1 = %p, *ptr1 = %d\n",

a, &a, ptr1, *ptr1) ;

*ptr1 = 35;

printf(“a = %d, &a = %p, ptr1 = %p, *ptr1 = %d\n", a,

&a, ptr1, *ptr1);

NULL

Adapted from Dennis Frey CMSC 313 Spring 2011

• NULL is a special value which may be assigned to a pointer

• NULL indicates that a pointer points to nothing

• Often used when pointers are declared
int *pInt = NULL;

• Used as return value to indicate failure

int *myPtr;

myPtr = myFunction();

if (myPtr == NULL){

/* something bad happened */

}

• Dereferencing a pointer whose value is NULL will result in
program termination.

Pointers and Function Arguments

Adapted from Dennis Frey CMSC 313 Spring 2011

• Since C passes all primitive function arguments “by value”.

/* version 1 of swap */

void swap (int a, int b)

{

int temp;

temp = a;

a = b;

b = temp;

}

/* calling swap from somewhere in main() */

int x = 42, y = 17;

swap(x, y);

printf(“%d, %d\n”, x, y); // what does this print?

3/22/2016

5

A better swap()

Adapted from Dennis Frey CMSC 313 Spring 2011

/* pointer version of swap */

void swap (int *px, int *py)

{

int temp;

temp = *px;

*px = *py;

*py = temp;

}

/* calling swap from somewhere in main() */

int x = 42, y = 17;

swap(&x, &y);

printf(“%d, %d\n”, x, y); // what does this print?

More Pointer Function Parameters

Adapted from Dennis Frey CMSC 313 Spring 2011

• Passing the address of variable(s) to a function can be used to

have a function “return” multiple values.

• The pointer arguments point to variables in the calling code which

are changed (“returned”) by the function.

ConvertTime.c

Adapted from Dennis Frey CMSC 313 Spring 2011

void convertTime (int time, int *pHours, int *pMins)

{

*pHours = time / 60;

*pMins = time % 60;

}

int main()

{

int time, hours, minutes;

printf("Enter a time duration in minutes: ");

scanf ("%d", &time);

convertTime (time, &hours, &minutes);

printf("HH:MM format: %d:%02d\n", hours, minutes);

return 0;

}

3/22/2016

6

An Exercise

Adapted from Dennis Frey CMSC 313 Spring 2011

• What is the output from this code?

void myFunction (int a, int *b) {

a = 7;

*b = a;

b = &a;

*b = 4;

printf("%d, %d\n", a, *b);

}

int main() {

int m = 3, n = 5;

myFunction(m, &n);

printf("%d, %d\n", m, n);

return 0;

}

Pointers to struct

/* define a struct for related student data */

typedef struct student {

char name[50];

char major[20];

double gpa;

} STUDENT;

STUDENT bob = {"Bob Smith", "Math", 3.77};

STUDENT sally = {"Sally", "CSEE", 4.0};

/* pStudent is a "pointer to struct student" */

STUDENT *pStudent;

/* make pStudent point to bob */

pStudent = &bob;

Adapted from Richard Chang, CMSC 313 Spring 2013

Pointers to struct(2)

Adapted from Dennis Frey CMSC 313 Spring 2011

/* pStudent is a "pointer to struct student” */

STUDENT *pStudent;

/* make pStudent point to bob */

pStudent = &bob;

printf (“Bob’s name: %s\n”, (*pStudent).name);

printf (“Bob’s gpa: %f\n”, (*pStudent).gpa);

/* use -> to access the members */

pStudent = &sally;

printf (“Sally’s name: %s\n”, pStudent->name);

printf (“Sally’s gpa: %f\n”, pStudent->gpa);

3/22/2016

7

Pointer to struct for functions

void printStudent(STUDENT *studentp) {

printf(“Name : %s\n”, studentp->name);

printf(“Major: %s\n”, studentp->major);

printf(“GPA : %4.2f”, studentp->gpa);

}

• Passing a pointer to a struct to a function is more efficient than

passing the struct itself. Why is this true?

Adapted from Richard Chang, CMSC 313 Spring 2013

Pointers and Arrays

Adapted from Richard Chang, CMSC 313 Spring 2013

Pointers and Arrays

• In C, there is a strong relationship between pointers and arrays.

• The declaration int a[10]; defines an array of 10 integers.

• The declaration int *p; defines p as a “pointer to an int”.

• The assignment p = a; makes p an alias for the array and sets p
to point to the first element of the array.
(We could also write p = &a[0];)

• We can now reference members of the array using either a or p

a[4] = 9;

p[3] = 7;

int x = p[6] + a[4] * 2;

Adapted from Richard Chang, CMSC 313 Spring 2013

3/22/2016

8

More Pointers and Arrays

• The name of an array is equivalent to a pointer to the first
element of the array and vice-versa.

• Therefore, if a is the name of an array, the expression
a[i] is equivalent to *(a + i).

• It follows then that &a[i] and (a + i) are also equivalent.
Both represent the address of the i-th element beyond a.

• On the other hand, if p is a pointer, then it may be used with a
subscript as if it were the name of an array.

p[i] is identical to *(p + i)

In short, an array-and-index expression is equivalent to a pointer-and- offset
expression and vice-versa.

Adapted from Richard Chang, CMSC 313 Spring 2013

So, what’s the difference?

• If the name of an array is synonymous with a pointer to the first element

of the array, then what’s the difference between an array name and a

pointer?

• An array name can only “point” to the first element of its array. It can

never point to anything else.

• A pointer may be changed to point to any variable or array of the

appropriate type

Adapted from Richard Chang, CMSC 313 Spring 2013

Array Name vs Pointer

Adapted from Richard Chang, CMSC 313 Spring 2013

int g, grades[] = {10, 20, 30, 40 }, myGrade

=

100, yourGrade = 85, *pGrade;

/* grades can be (and usually is) used as

array for (g = 0; g < 4; g++)

printf(“%d\n” grades[g]);

/* grades can be used as a pointer to its

array for (g = 0; g < 4; g++)

printf(“%d\n” *(grades + g);

name */

if it doesn’t change*/

/* but grades can’t point anywhere

grades = &myGrade;

else */

/* compiler error */

/* pGrades can be an alias for grades and used like an array name

*/pGrades = grades;

for(g = 0; g < 4; g++)

printf(“%d\n”, pGrades[g]);

/* or pGrades = &grades[0]; */

/* pGrades can be an alias for grades and be used like a pointer that changes

*/ for (g = 0; g < 4; g++)

printf(“%d\n” *pGrades++);

/* BUT,

pGrades

printf(

pGrades

printf(

pGrades can point to something else other than the grades array

*/

= &myGrade;

“%d\n”, *pGrades);

= &yourGrade;

“%d\n”, *pGrades);

3/22/2016

9

Array Name vs Pointer

Adapted from Dennis Frey CMSC 313 Spring 2011

int g, grades[] = {10, 20, 30, 40 }, myGrade = 100, yourGrade = 85, *pGrade;

/* grades can be (and usually is) used as array name */

for (g = 0; g < 4; g++)

printf(“%d\n” grades[g]);

/* grades can be used as a pointer to its array if it doesn’t change*/

for (g = 0; g < 4; g++)

printf(“%d\n” *(grades + g);

/* but grades can’t point anywhere else */

Grades = &myGrade; /* compiler error */

/* pGrades can be an alias for grades and used like an array name */

pGrades = grades; /* or pGrades = &grades[0]; */

for(g = 0; g < 4; g++)

printf(“%d\n”, pGrades[g]);

/* pGrades can be an alias for grades and be used like a pointer that changes */

for (g = 0; g < 4; g++)

printf(“%d\n” *pGrades++);

/* BUT, pGrades can point to something else other than the grades array */

pGrades = &myGrade;

printf(“%d\n”, *pGrades);

pGrades = &yourGrade;

printf(“%d\n”, *pGrades);

More Pointers & Arrays

• If p points to a particular element of an array, then p + 1 points to the

next element of the array and p + n points n elements after p.

• The meaning a “adding 1 to a pointer” is that p + 1 points to the next

element in the array, REGARDLESS of the type of the array.

Adapted from Richard Chang, CMSC 313 Spring 2013

Pointer Arithmetic

• If p is an alias for an array of ints, then p[k] is the k-th int and so is
*(p + k).

• If p is an alias for an array of doubles, then

p[k] is the k-th double and so is *(p + k).

• Adding a constant, k, to a pointer (or array name) actually adds k

* sizeof(pointer type) to the value of the pointer.

• This is one important reason why the type of a pointer must be

specified when it’s defined.

Adapted from Richard Chang, CMSC 313 Spring 2013

3/22/2016

10

Pointer Gotcha

Adapted from Richard Chang, CMSC 313 Spring 2013

• But what if p isn’t the alias of an array?

• Consider this code.

int a = 42;

int *p = &a;

printf(“%d\n”, *p); // prints 42

++p; // to what does p point now?

printf(“%d\n”, *p); // what gets printed

//

Printing an Array

Adapted from Richard Chang, CMSC 313 Spring 2013

• The code below shows how to use a parameter array name
as a pointer.

void printGrades(int grades[], int size)
{

int i;
for (i = 0; i < size; i++)

printf(“%d\n”, *grades);
++grades;

}

• What about this prototype?

void printGrades(int *grades, int size);

Passing Arrays

Adapted from Richard Chang, CMSC 313 Spring 2013

• Arrays are passed “by reference” (its address is passed by

value):

int sumArray(int A[], int size) ;

is equivalent to

int sumArray(int *A, int size) ;

• Use A as an array name or as a pointer.

• The compiler always sees A as a pointer. In fact, any error

messages produced will refer to A as an int *

3/22/2016

11

sumArray

int sumArray(int A[], int size)

{

int k, sum = 0;

for (k = 0; k < size; k++)

sum += A[k];

return sum;

}

Adapted from Richard Chang, CMSC 313 Spring 2013

sumArray (2)

int sumArray(int A[], int size)

{

int k, sum = 0;

for (k = 0; k < size; k++)

sum += *(A + k);

return sum;

}

int sumArray(int A[], int size)

{

int k, sum = 0;

for (k = 0; k < size; k++)

}

sum += *A;

++A;

}

return sum;

}

Adapted from Richard Chang, CMSC 313 Spring 2013

