
2/21/2017

1

x86 Assembly Language III

CMSC 313

Sections 01, 02

i386 Instruction Overview

2

i386 Instruction Set Overview

• General Purpose Instructions

– works with data in the general purpose registers

• Floating Point Instructions

– floating point arithmetic

– data stored in separate floating point registers

• Single Instruction Multiple Data (SIMD)

Extensions

– MMX, SSE, SSE2

• System Instructions

– Sets up control registers at boot time

UMBC, CMSC313, Richard Chang <chang@umbc.edu>3

2/21/2017

2

4

5

6

2/21/2017

3

7

8

9

2/21/2017

4

10

11

Common Instructions

• Basic Instructions

– ADD, SUB, INC, DEC, MOV, NOP

• Branching Instructions

– JMP, CMP, Jcc

• More Arithmetic Instructions

– NEG, MUL, IMUL, DIV, IDIV

• Logical (bit manipulation) Instructions

– AND, OR, NOT, SHL, SHR, SAL, SAR, ROL,

ROR, RCL, RCR

• Subroutine Instructions

– PUSH, POP, CALL, RET
UMBC, CMSC313, Richard Chang <chang@umbc.edu>

12

2/21/2017

5

READ THE FRIENDLY

MANUAL (RTFM)

• Best Source: Intel Instruction Set Reference

– Available off the course web page in PDF

– Download it, you’ll need it

• Other sources:

– Appendix A of Assembly Language Step-by-Step

• Questions to ask:

– Basic function? (e.g., adds two numbers)

– Addressing modes supported? (e.g., register to

register)

– Side effects? (e.g., OF modified)

UMBC, CMSC313, Richard Chang <chang@umbc.edu>13

14

Intel Manual’s Addressing Mode Notation

• r8: One of the 8-bit registers AL, CL, DL, BL, AH, CH, DH, or BH.

• r16: One of the 16-bit registers AX, CX, DX, BX, SP, BP, SI, or DI.

• r32: One of the 32-bit registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or

EDI.

• imm8: An immediate 8-bit value.

• imm16: An immediate 16-bit value.

• imm32: An immediate 32-bit value.

• r/m8: An 8-bit operand that is either the contents of an 8-bit register

(AL, BL, CL, DL, AH, BH, CH, and DH), or a byte from memory.

• r/m16: A 16-bit register (AX, BX, CX, DX, SP, BP, SI, and DI) or memory

operand used for instructions whose operand-size attribute is 16 bits.

• r/m32: A 32-bit register (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI)

or memory operand used for instructions whose operand-size attribute

is 32 bits.

15

2/21/2017

6

The EFLAGS Register

• A special 32-bit register that contains “results” of

previous instructions

– OF = overflow flag, indicates two’s complement

overflow.

– SF = sign flag, indicates a negative result.

– ZF = zero flag, indicates the result was zero.

– CF = carry flag, indicates unsigned overflow, also used

in shifting

• An operation may set, clear, modify or test a flag.

• Some operations leave a flag undefined.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

16

17

18

2/21/2017

7

Summary of ADD Instruction

• Basic Function:

– Adds source operand to destination operand.

– Both signed and unsigned addition performed.

• Addressing Modes:

– Source operand can be immediate, a register or memory.

– Destination operand can be a register or memory.

– Source and destination cannot both be memory.

• Flags Affected:

– OF = 1 if two’s complement overflow occurred

– SF = 1 if result in two’s complement is negative (MSbit = 1)

– ZF = 1 if result is zero

– CF = 1 if unsigned overflow occurred

UMBC, CMSC313, Richard Chang <chang@umbc.edu>19

20

21

2/21/2017

8

22

23

24

2/21/2017

9

25

26

Conditional Jumps

27

2/21/2017

10

Branching Instructions

• JMP = unconditional jump

• Conditional jumps use the flags to decide

whether to jump to the given label or to continue.

• The flags were modified by previous arithmetic

instructions or by a compare (CMP) instruction.

• The instruction:

CMP op1, op2

computes the unsigned and two’s complement

subtraction op1 - op2 and modifies the flags. The

contents of op1 are not affected.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>28

Example of CMP instruction

• Suppose AL contains 254. After the instruction:

CMP AL, 17

CF = 0, OF = 0, SF = 1 and ZF = 0.

• A JA (jump above) instruction would jump.

• A JG (jump greater than) instruction wouldn’t

jump.

• Both signed and unsigned comparisons use the

same CMP instruction.

• Signed and unsigned jump instructions interpret

the flags differently.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

29

More Conditional Jumps

• Uses flags to determine whether to jump

– Example: JAE (jump above or equal) jumps when the

Carry Flag = 0

CMP EAX, 1492

JAE OceanBlue

• Unsigned vs signed jumps

– Example: use JAE for unsigned data JGE (greater than

or equal) for signed data

CMP EAX, 1492 CMP EAX, -42

JAE OceanBlue JGE Somewhere

UMBC, CMSC313, Richard Chang <chang@umbc.edu>
30

2/21/2017

11

31

32

33

2/21/2017

12

34

35

Closer look at JGE

• JGE jumps if and only if SF = OF

– Examples using 8-bit registers. Which of these result in a jump?

1. MOV AL, 96 2. MOV AL, -64

CMP AL, 80 CMP AL, 80

JGE Somewhere JGE Somewhere

3. MOV AL, 64 4. MOV AL, 64

CMP AL, -80 CMP AL, 80

JGE Somewhere JGE Somewhere

• If OF=0, then use SF to check whether A-B >= 0.

• If OF=1, then do opposite of SF.

• JGE works after a CMP instruction, even when subtracting

the operands result in an overflow!

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

36

2/21/2017

13

Short Jumps vs. Near Jumps

• Jumps use relative addressing

– assembler computes an offset from address of

current instruction.

– produces relocatable code

• SHORT jumps use 8-bit offsets

– target label within -128 bytes to +127 bytes

• NEAR jumps use 32-bit offsets

– target label within -231 bytes to +231-1 bytes

(there is also an absolute address version)

37

Short Jumps vs. Near Jumps

• Some assemblers determine SHORT vs NEAR

jumps automatically, but some do not.

• explicitly specify SHORT jumps

jmp SHORT somewhere

• explicitly specify NEAR jumps

jge NEAR somewhere

38

39

2/21/2017

14

40

Using Jump Instructions

41

Converting an if Statement

MOV EAX,[x]

CMP EAX,[y]

JGE ElsePart

. ; if part

. ; statement block 1

.

JMP Done ; skip over else part

ElsePart:

. ; else part

. ; statement block 2

.

Done:

42

if (x < y) {

statement block 1 ;

} else {

statement block 2 ;

}

2/21/2017

15

Converting a while Loop

WhileTop:

MOV EAX,[i]

CMP EAX,0

JLE Done

. ; statement 1

.

.

. ; statement 2

.

.

JMP WhileTop

Done:

43

while (i > 0) {

statement 1 ;

statement 2 ;

}

References

• Some figures and diagrams from IA-32 Intel

Architecture Software Developer's Manual,

Vols 1-3

<http://developer.intel.com/design/Pentium4/man

uals/>

44

http://developer.intel.com/design/Pentium4/manuals/

