
2/21/2017

1

x86 Assembly Language II

CMSC 313

Sections 01, 02

Recap i386 Basic Architecture

• Registers are storage units inside the CPU.

• Registers are much faster than memory.

• 8 General purpose registers in i386:

– EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

– can access subparts of EAX, EBX, ECX and EDX via

special names (e.g., EAXAX{AH,AL})

• The instruction pointer (EIP) points to (i.e., contains

addr of) machine code to be executed next.

• Typically, data moves from memory to registers, is

processed, moves from registers back to memory.

• Different addressing modes used.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>2

3

BASIC EXECUTION ENVIRONMENT

0

232 -1

32-bits

32-bits

General-Purpose Registers

Segment Registers

EFLAGS Register

EIP (Instruction Pointer Register)

Address Space*

Six 16-bit
Registers

Eight 32-bit
Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersEight 128-bit
Registers

16-bits

16-bits

48-bits

48-bits

FPU Instruction Pointer Register

FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

SSE and SSE2 Registers

Basic Program Execution Registers

16-bits

Control Register

Status Register

Tag Register

Opcode Register (11-bits)

*The address space can be
flat or segmented. Using
the physical address
extension mechanism, a
physical address space of
236 1 can be addressed.

2/21/2017

2

4

31

General-Purpose Registers

16 15 8 7 0 16-bit 32-bit

AX EAX

BX EBX

CX ECX

DX EDX

EBP

ESI

EDI

ESP

Figure 3-4. Alternate General-Purpose Register Names

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

5

• EAX—Accumulator for operands and results data.

• EBX—Pointer to data in the DS segment.

• ECX—Counter for string and loop operations.

• EDX—I/O pointer.

• ESI—Pointer to data in the segment pointed to by the DS register; source pointer for string
operations.9

• EDI—Pointer to data (or destination) in the segment pointed to by the ES register;
destination pointer for string operations.

• ESP—Stack pointer (in the SS segment).

• EBP—Pointer to data on the stack (in the SS segment).

toupper.asm

• Use Linux system call to output prompt.

• Use Linux system call to get user input.

• Scan each character of user input and convert all

lower case characters to upper case.

• Learn how to:

– work with 8-bit data

– specify ASCII constant

– compare values

– do loop control

• Use gdb to trace execution

UMBC, CMSC313, Richard Chang <chang@umbc.edu>
6

2/21/2017

3

[Show source of toupper.asm]

7

GDB Debugger

8

Debugging Assembly Language

Programs

• Cannot just put print statements everywhere.

• Use gdb to:

– examine contents of registers

– examine contents of memory

– set breakpoints

– single-step through program

• READ THE GDB SUMMARY ONLINE!

UMBC, CMSC313, Richard Chang <chang@umbc.edu>9

2/21/2017

4

Summary of gdb commands, p1

10

Command Example Description

Run start program

quit quit out of gdb

cont continue execution after a break

break [addr] break _start+5 sets a breakpoint

delete [n] delete 4 removes nth breakpoint

Delete removes all breakpoints

info break lists all breakpoints

list _start list a few lines of the source code around

_start

list 7 list 10 lines of the source code around line 7

list 7, 20 list lines 7 thru 20 of the source code

Summary of gdb commands, p2

11

Command Example Description

Stepi or step execute next instruction

stepi [n] stepi 4 execute next n instructions

Nexti or next execute next instruction, stepping over

function calls

nexti [n] nexti 4 execute next n instructions, stepping over

function calls

where show where execution halted

disas [addr] disas _start disassemble instructions at given address

Summary of gdb commands, p3

12

Command Example Description

info registers dump contents of all registers

print/d [expr] print/d $ecx print expression in decimal

print/x [expr] print/x $ecx print expression in hex

print/t [expr] print/t $ecx print expression in binary

x/NFU [addr] x/12xw &msg Examine contents of memory in given

format

display [expr] display $eax automatically print the expression each time

the program is halted

info display show list of automatically displays

undisplay [n] undisplay 1 remove an automatic display

