
-1-

GNU GDB Tutorial

September 2009, update Feb 2010

Dennis Frey

The material in this tutorial is condensed from the on-line GNU GDB manual. The

"resources" page on the CMSC 313 website has a link to the complete on-line manual.

The Unix man pages "man gdb" has an abbreviated description of many common

commands.

When you write a program to implement the solution to some problem, each line of code

you write makes one or more assumptions. Most commonly your code assumes

something about the state of the program – the values of variables. When one of those

assumptions is not true your program fails – the wrong result is produced or your

program terminates. The art of debugging is to quickly locate which assumption is not

true, why it's not true and the set of circumstances that caused it to be untrue. You can

then edit your code so that the assumption is true again.

Debuggers are just tools that allow you to find the false assumption. Your program runs

under the debugger's control, allowing you to stop your program and examine memory to

find the false assumption. It's up to you to fully understand your code so you have a

reasonable idea of which part of the code on which to focus.

The notes attached are a brief summary of the most common GDB commands and a few

more advanced features

For example purposes our executable program's name is gdbDemo. This program

consists of two .c files -- main.c and numbers.c. This program asks the user for an integer

input, prints the number with digits reversed and determines if the integer is a triangular

number and if the integer is a prime number.

When your program is compiled and linked, information about variable names, function

names, etc. (the symbol table) are lost -- the computer doesn't need them to execute your

program. However, GDB does need them. To tell the compiler/linker to save the symbol

table information, compile/link your program with the -g switch. For example

 gcc -g -o gdbDemo main.c numbers.c

If you run GDB on a program that was not compiled/linked with –g, you see the error

message "No symbol table is loaded. Use the "file" command."

-2-

1. Starting and stopping GDB

To run your program under GDB's control, type

 gdb program name

at the Linux prompt. Do not enter your program's command line arguments. We'll do

that later.

To exit GDB, type

 quit (abbreviated q) at the GDB prompt

2. GDB commands

Commands entered at the GDB prompt may be abbreviated to the shortest unique

completion. Several common commands may be abbreviated to a single character, even

though other commands start with that same character.

Character Command

b breakpoint

set a place where GDB stops executing your program

c continue program execution

l list source code

n execute the next line of code, then stop

P print the value of a variable or expression

q quit GDB

r run your program from the beginning

s step to the next line of code

x examine memory

Entering GDB commands allow "auto completion". Enter TAB to complete your

command. Arrow keys are available to see prior commands.

Help

GDB provides internal help for the user. Typing help at the command line prints a list of

command categories. You can them type help category or help command for more

specific help. The apropos command can be used to find commands.

3. Basic Debugging

Use the run (abbreviated r) command to start your program under GDB. If your

program requires command line arguments, provide them to the run command. E.g. the

command

 run 12 bob

begins executing your program, passing the command line arguments "12" and "bob" to

main(). Unix redirection may also be used with the run command. To get the user input

from a file type the command

 run < filename

You can use run to restart your program at any time within GDB.

-3-

 4. Breakpoints and watchpoints

The principal purposes of using a debugger are so that you can stop your program before

it terminates; or so that, if your program runs into trouble, you can investigate and find

out why.

Inside GDB, your program may stop for any of several reasons, such as a signal, a

breakpoint, or reaching a new line after a GDB command such as step. You may then

examine and change variables, set new breakpoints or remove old ones, and then

continue execution. Usually, the messages shown by GDB provide ample explanation of

the status of your program--but you can also explicitly request this information at any

time.

A breakpoint tells GDB to stop your program's execution when a certain point is reached

in your program. For each breakpoint, you can add conditions to control in finer detail

whether your program stops. You can set breakpoints with the break command and its

variants to specify the place where your program should stop by line number, function

name or exact address in the program.

break line number

break function name
break

To set a breakpoint, use the break (abbreviated b) command. The break

command's arguments may be a line number, a function name, or the address of

an instruction. With no arguments, the break command sets a breakpoint at the

next instruction to be executed.

break location if condition

A breakpoint may have an associated Boolean condition. GDB will stop your

program's execution at the breakpoint only if the Boolean condition is true

where location is a line number, function name, etc.

You can get information about all the breakpoints you've set using the info command

 info breakpoints

You can use a watchpoint to stop execution whenever the value of an expression changes,

without having to predict a particular place where this may happen. (This is sometimes

called a data breakpoint.) The expression may be as simple as the value of a single

variable, or as complex as many variables combined by operators. Examples include:

 A reference to the value of a single variable.

 An address cast to an appropriate data type. For example, `*(int

*)0x12345678' will watch a 4-byte region at the specified address (assuming

an int occupies 4 bytes).

-4-

 An arbitrarily complex expression, such as `a*b + c/d'. The expression can

use any operators valid in the program's native language

 You can set a watchpoint on an expression even if the expression can not be

evaluated yet.

watch expr

Set a watchpoint for an expression. GDB will break when the expression expr is

written into by the program and its value changes. The simplest (and the most

popular) use of this command is to watch the value of a single variable:

 watch total

You can get information about all the watchpoints you've set using the info command

 info watchpoints

5 Continuing and stepping

Continuing means resuming program execution until your program completes normally.

In contrast, stepping means executing just one more "step" of your program, where "step"

may mean either one line of source code, or one machine instruction (depending on what

particular command you use). Either when continuing or when stepping, your program

may stop even sooner, due to a breakpoint or a signal.

A typical technique for using stepping is to set a breakpoint at the beginning of the

function or the section of your program where a problem is believed to lie, run your

program until it stops at that breakpoint, and then step through the suspect area,

examining the variables that are interesting, until you see the problem happen.

continue (abbreviated c)

The continue command resumes your program's execution from the address at

which it was stopped (probably a breakpoint), and runs your program to the next

breakpoint or until your program exits normally.

step (abbreviated s)

The step command continues running your program until control reaches a

different source line, then stops it and returns control to GDB. The step

command only stops at the first instruction of a source line. The step command

continues to stop if a function that has debugging information is called within the

line. In other words, step steps inside any functions called within the line.

step count

Continue running as in step, but do so count times. If a breakpoint is reached, or

a signal not related to stepping occurs before count steps, stepping stops right

away.

-5-

next [count]

Continue to the next source line in the current (innermost) stack frame. This is

similar to step, but function calls that appear within the line of code are

executed without stopping. Execution stops when control reaches a different line

of code at the original stack level that was executing when you gave the next

command. This command is abbreviated n. The optional argument count is a

repeat count, as for step.
stepi

stepi arg
si

Execute one machine instruction, then stop and return to the debugger.

It is often useful to do `display/i $pc' when stepping by machine

instructions. This makes GDB automatically display the next instruction to be

executed, each time your program stops. The argument arg is a repeat count, as

in step.
nexti

nexti arg
ni

Execute one machine instruction, but if it is a function call, proceed until the

function returns. The argument arg is a repeat count, as in next.

6. Examining the stack

When your program has stopped, the first thing you need to know is where it stopped and

how it got there.

Each time your program performs a function call, information about the call is generated.

That information includes the location of the call in your program, the arguments of the

call, and the local variables of the function being called. The information is saved in a

block of data called a stack frame. The stack frames are allocated in a region of memory

called the call stack.

When your program stops, the GDB commands for examining the stack allow you to see

all of this information.

One of the stack frames is selected by GDB and many GDB commands refer implicitly to

the selected frame. In particular, whenever you ask GDB for the value of a variable in

your program, the value is found in the selected frame. By default, the current stack

frame is used. The call stack is divided up into contiguous pieces called stack frames, or

frames for short; each frame is the data associated with one call to one function. The

frame contains the arguments given to the function, the function's local variables, and the

address at which the function is executing.

-6-

When your program is started, the stack has only one frame, that of the function main.

This is called the initial frame or the outermost frame. Each time a function is called, a

new frame is made. Each time a function returns, the frame for that function invocation is

eliminated. If a function is recursive, there can be many frames for the same function.

The frame for the function in which execution is actually occurring is called the

innermost frame. This is the most recently created of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame

consists of many bytes, each of which has its own address; each kind of computer has a

convention for choosing one byte whose address serves as the address of the frame.

Usually this address is kept in a register called the frame pointer register while execution

is going on in that frame.

GDB assigns numbers to all existing stack frames, starting with zero for the innermost

frame, one for the frame that called it, and so on upward. These numbers do not really

exist in your program; they are assigned by GDB to give you a way of designating stack

frames in GDB commands.

frame arg

The frame command allows you to move from one stack frame to another, and to

print the stack frame you select. arg may be either the address of the frame or the

stack frame number. Without an argument, frame prints the current stack frame.
select-frame

The select-frame command allows you to move from one stack frame to

another without printing the frame. This is the silent version of frame.

Backtraces

A backtrace is a summary of how your program got where it is. It shows one line per

frame, for many frames, starting with the currently executing frame (frame zero),

followed by its caller (frame one), and on up the stack. The backtrace (or where)

command prints information about the call stack.

backtrace
bt

Print a backtrace of the entire stack: one line per frame for all frames in the stack.

You can stop the backtrace at any time by typing the system interrupt character,

normally Ctrl-c.

backtrace n
bt n

Similar, but print only the innermost n frames.

-7-

backtrace full
bt full

bt full n

Print the values of the local variables also. n specifies the number of frames to

print, as described above.

When your program terminates because of a "seg fault" or other failure, the operating

system saves a copy of your program at the time of the termination. This copy is saved in

a "core file" which is named core.pid, where pid is the process id number of your

program when it was running (e.g. core.1357). By using GDB to look at the core file,

(e.g. gdb core.1357), you can tell exactly where your program terminated -- just use the

backtrace command. You'll see the entire list of stack frames. Stack frame #0 is where

your program terminated -- you'll see the function name and line number.

7. Examining source code

DB can print parts of your program's source, since the debugging information recorded in

the program tells GDB what source files were used to build it. When your program stops,

GDB spontaneously prints the line where it stopped. Likewise, when you select a stack

frame, GDB prints the line where execution in that frame has stopped. You can print

other portions of source files by explicit command.

To print lines from a source file, use the list command (abbreviated l). By default, ten

(10) lines are printed. Here are the forms of the list command most commonly used:

list linenum

list filename:linenum

Print lines centered around line number linenum in the current source file.

list function

list filename:function

Print lines centered around the beginning of function function.

list

Print more lines. If the last lines printed were printed with a list command, this

prints lines following the last lines printed; however, if the last line printed was a

solitary line printed as part of displaying a stack frame prints lines centered

around that line.

list -

Print lines just before the lines last printed.

list *address

Specifies the program address address. This specifies a source line that contains

address.

-8-

By default, GDB prints ten (10) source lines with any of these forms of the list

command. You can change this using set listsize:

 8. Examining Data

The usual way to examine data in your program is with the print command (abbreviated

p). It evaluates and prints the value of an expression of the language in which your

program is written.

print expr
print /f expr

expr is an expression (in the source language). By default the value of expr is

printed in a format appropriate to its data type; you can choose a different format

by specifying `/f', where f is a letter specifying the format.
print
print /f

If you omit expr, GDB displays the last value again. This allows you to

conveniently inspect the same value in an alternative format.

By default, GDB prints a value according to its data type. Sometimes this is not what you

want. For example, you might want to print a number in hex, or a pointer in decimal. Or

you might want to view data in memory at a certain address as a character string or as an

instruction. To do these things, specify an output format when you print a value.

The simplest use of output formats is to say how to print a value already computed. This

is done by starting the arguments of the print command with a slash and a format letter.

The format letters supported are:

x -- regard the bits of the value as an integer, and print the integer in hexadecimal.

d -- print as integer in signed decimal.

u -- print as integer in unsigned decimal.

o -- print as integer in octal.

t -- print as integer in binary. The letter `t' stands for "two".

a -- print as an address, both absolute in hexadecimal and as an offset from the nearest

preceding symbol. You can use this format used to discover where (in what function) an

unknown address is located:

(gdb) p/a 0x54320

$3 = 0x54320 <_initialize_vx+396>

-9-

c -- regard as an integer and print it as a character constant. This prints both the

numerical value and its character representation. The character representation is replaced

with the octal escape `\nnn' for characters outside the 7-bit ASCII range. Without this

format, GDB displays char, unsigned char, and signed char data as character

constants. Single-byte members of vectors are displayed as integer data.

f -- regard the bits of the value as a floating point number and print using typical

floating point syntax.

s -- regard as a string, if possible. With this format, pointers to single-byte data are

displayed as null-terminated strings and arrays of single-byte data are displayed as fixed-

length strings. Other values are displayed in their natural types. Without this format,

GDB displays pointers to and arrays of char, unsigned char, and signed char as

strings. Single-byte members of a vector are displayed as an integer array.

r -- print using the `raw' formatting. By default, GDB will use a type-specific pretty-

printer. The `r' format bypasses any pretty-printer which might exist for the value's

type.

If you find that you want to print the value of an expression frequently (to see how it

changes), you might want to add it to the automatic display list so that GDB prints its

value each time your program stops. Each expression added to the list is given a number

to identify it; to remove an expression from the list, you specify that number. The

automatic display looks like this:

2: foo = 38

3: bar[5] = (struct hack *) 0x3804

This display shows item numbers, expressions and their current values. As with displays

you request manually using x or print, you can specify the output format you prefer; in

fact, display decides whether to use print or x depending your format specification--it

uses x if you specify either the `i' or `s' format, or a unit size; otherwise it uses

print.

display expr

Add the expression expr to the list of expressions to display each time your

program stops.

display does not repeat if you press RET again after using it.
display/fmt expr

For fmt specifying only a display format and not a size or count, add the

expression expr to the auto-display list but arrange to display it each time in the

specified format fmt. See Output Formats above.
display/fmt addr

For fmt `i' or `s', or including a unit-size or a number of units, add the

expression addr as a memory address to be examined each time your program

stops. Examining means in effect doing `x/fmt addr'. See section Examining

Memory.

-10-

For example, `display/i $pc' can be helpful, to see the machine instruction about

to be executed each time execution stops (`$pc' is a common name for the program

counter; see the section on Registers below.

9. Examining Memory

You can use the command x (for "examine") to examine memory in any of several

formats, independently of your program's data types.

x/nfu addr
x addr
x

n, f, and u are all optional parameters that specify how much memory to display and how

to format it; addr is an expression giving the address where you want to start displaying

memory. If you use defaults for nfu, you need not type the slash `/'. Several commands

set convenient defaults for addr.

n, the repeat count

The repeat count is a decimal integer; the default is 1. It specifies how much

memory (counting by units u) to display.

f, the display format

The display format is one of the formats used by print (`x', `d', `u', `o',

`t', `a', `c', `f', `s'), and in addition `i' (for machine instructions). The

default is `x' (hexadecimal) initially. The default changes each time you use

either x or print.

u, the unit size

The unit size is any of

b -- bytes.

h -- halfwords (two bytes).

w -- words (four bytes). This is the initial default.

g -- giant words (eight bytes).

Each time you specify a unit size with x, that size becomes the default unit the

next time you use x. (For the `s' and `i' formats, the unit size is ignored and is

normally not written.)

For example, to display t

addr, starting display address

addr is the address where you want GDB to begin displaying memory. The

expression need not have a pointer value (though it may); it is always interpreted

as an integer address of a byte of memory. The default for addr is usually just

after the last address examined--but several other commands also set the default

-11-

address: info breakpoints (to the address of the last breakpoint listed), info

line (to the starting address of a line), and print (if you use it to display a value

from memory).

For example, `x/3uh 0x54320' is a request to display three halfwords (h) of

memory, formatted as unsigned decimal integers (`u'), starting at address 0x54320.

disassemble
disassemble /m
disassemble /r

This specialized command dumps a range of memory as machine instructions. It

can also print mixed source+disassembly by specifying the /m modifier and print

the raw instructions in hex as well as in symbolic form by specifying the /r. The

default memory range is the function surrounding the program counter of the

selected frame. A single argument to this command is a program counter value;

gdb dumps the function surrounding this value. When two arguments are given,

they should be separated by a comma, possibly surrounded by whitespace. The

arguments specify a range of addresses (first inclusive, second exclusive) to

dump. In that case, the name of the function is also printed (since there could be

several functions in the given range).

The argument(s) can be any expression yielding a numeric value, such as

`0x32c4', `&main+10' or `$pc - 8'.

If the range of memory being disassembled contains current program counter, the

instruction at that location is shown with a => marker.

Here is an example showing mixed source+assembly for Intel x86, when the program is

stopped just after function prologue:

 (gdb) disas /m main

 Dump of assembler code for function main:

 5 {

 0x08048330 <+0>: push %ebp

 0x08048331 <+1>: mov %esp,%ebp

 0x08048333 <+3>: sub $0x8,%esp

 0x08048336 <+6>: and $0xfffffff0,%esp

 0x08048339 <+9>: sub $0x10,%esp

 6 printf ("Hello.\n");

 => 0x0804833c <+12>: movl $0x8048440,(%esp)

 0x08048343 <+19>: call 0x8048284 <puts@plt>

 7 return 0;

 8 }

 0x08048348 <+24>: mov $0x0,%eax

 0x0804834d <+29>: leave

 0x0804834e <+30>: ret

 End of assembler dump.

-12-

Some architectures have more than one commonly-used set of instruction mnemonics or

other syntax.

For programs that were dynamically linked and use shared libraries, instructions that call

functions or branch to locations in the shared libraries might show a seemingly bogus

location—it's actually a location of the relocation table. On some architectures, gdb might

be able to resolve these to actual function names.

10. Registers

Machine registers are where the computer performs arithmetic, performs logic, and tracks

the position of instructions and the call stack.

You can refer to machine register contents, in expressions, as variables with names

starting with `$'. The names of registers are different for each machine; use info

registers to see the names used on your machine.

info registers
Print the names and values of all registers except floating-point and vector

registers (in the selected stack frame).

GDB has four "standard" register names that are available (in expressions) on most

machines--whenever they do not conflict with an architecture's canonical mnemonics for

registers. The register names $pc and $sp are used for the program counter register and

the stack pointer. $fp is used for a register that contains a pointer to the current stack

frame, and $ps is used for a register that contains the processor status. For example, you

could print the program counter in hex with

 p/x $pc

or print the instruction to be executed next with

 x/i $pc

or add four to the stack pointer(10) with

 set $sp += 4

http://sourceware.org/gdb/current/onlinedocs/gdb_fot.html#FOOT10

-13-

11. Examining the symbol table

The commands described in this chapter allow you to inquire about the symbols (names

of variables, functions and types) defined in your program. This information is inherent

in the text of your program and does not change as your program executes. GDB finds it

in your program's symbol table.

info address symbol

Describe where the data for symbol is stored. For a register variable, this says

which register it is kept in. For a non-register local variable, this prints the stack-

frame offset at which the variable is always stored.

info symbol addr

Print the name of a symbol which is stored at the address addr. If no symbol is

stored exactly at addr, GDB prints the nearest symbol and an offset from it:

(gdb) info symbol 0x54320

_initialize_vx + 396 in section .text

This is the opposite of the info address command. You can use it to find out the

name of a variable or a function given its address.

info functions

 Prints a list of all function names

whatis [arg]

Print the data type of arg, which can be either an expression or a data type. With

no argument, print the data type of $, the last value in the value history. If arg is

an expression, it is not actually evaluated, and any side-effecting operations (such

as assignments or function calls) inside it do not take place. If arg is a type name,

it may be the name of a type or typedef, or for C code it may have the form

`struct struct-tag', `union union-tag' or `enum enum-tag'.

ptype [arg]

ptype accepts the same arguments as whatis, but prints a detailed description of

the type, instead of just the name of the type. For example, for this variable

declaration:

 struct complex {double real; double imag;} v;

the two commands give this output:

(gdb) whatis v

type = struct complex

(gdb) ptype v

type = struct complex {

 double real;

 double imag;

}

-14-

12. Altering Execution

Once you think you have found an error in your program, you might want to find out for

certain whether correcting the apparent error would lead to correct results in the rest of

the run. You can find the answer by experiment, using the GDB features for altering

execution of the program.

Changing the value of a variable

To alter the value of a variable, evaluate an assignment expression.

 print x=4

stores the value 4 into the variable x, and then prints the value of the assignment

expression (which is 4). If you are not interested in seeing the value of the assignment,

use the set var command instead of the print command. set var is really the same as

print except that the expression's value is not printed and is not put in the value history

Calling a function

At the gdb prompt, you may call a function and display its return value if any.

print expr

Evaluate the expression expr and display the resulting value. expr may include

calls to functions in the program being debugged.

call expr

Evaluate the expression expr without displaying void returned values.

You can use this variant of the print command if you want to execute a function

from your program that does not return anything (a.k.a. a void function), but

without cluttering the output with void returned values that GDB will otherwise

print. If the result is not void, it is printed and saved in the value history.

-15-

13. Miscellaneous

Saving memory to a file

You can use the command dump copy data from memory to a file. The dump command

write data to a file,

dump [format] memory filename start_addr end_addr
dump [format] value filename expr

Dump the contents of memory from start_addr to end_addr, or the value of expr,

to filename in the given format.

The format parameter may be any one of:

binary

Raw binary form.
ihex
Intel hex format.
srec
Motorola S-record format.
tekhex

Tektronix Hex format.

GDB uses the same definitions of these formats as the GNU binary utilities, like

`objdump' and `objcopy'. If format is omitted, GDB dumps the data in raw

binary form.

Core Files

When your program terminates abnormally (e.g. a segmentation fault), Linux creates a

core file which is a binary image of your program at the time of execution. The name of

your core files is core.pid, where pid is the numeric process-id of your program at the

time it was executing. You can use GDB to investigate where your program terminated

by starting GDB with the name of the core file (e.g. gdb core.2367), then doing a

backtrace to show the call stack.

Snapshots

On certain operating systems, GDB is able to save a snapshot of a program's state, called

a checkpoint, and come back to it later.

Returning to a checkpoint effectively undoes everything that has happened in the

program since the checkpoint was saved. This includes changes in memory, registers,

and even (within some limits) system state. Effectively, it is like going back in time to the

moment when the checkpoint was saved.

-16-

Thus, if you're stepping thru a program and you think you're getting close to the point

where things go wrong, you can save a checkpoint. Then, if you accidentally go too far

and miss the critical statement, instead of having to restart your program from the

beginning, you can just go back to the checkpoint and start again from there.

This can be especially useful if it takes a lot of time or steps to reach the point where you

think the bug occurs.

To use the checkpoint/restart method of debugging:

checkpoint

Save a snapshot of the debugged program's current execution state. The

checkpoint command takes no arguments, but each checkpoint is assigned a

small integer id, similar to a breakpoint id.
info checkpoints

List the checkpoints that have been saved in the current debugging session. For

each checkpoint, the following information will be listed:
Checkpoint ID
Process ID
Code Address
Source line, or label

restart checkpoint-id

Restore the program state that was saved as checkpoint number checkpoint-id. All

program variables, registers, stack frames etc. will be returned to the values that

they had when the checkpoint was saved. In essence, gdb will "wind back the

clock" to the point in time when the checkpoint was saved.

Note that breakpoints, GDB variables, command history etc. are not affected by

restoring a checkpoint. In general, a checkpoint only restores things that reside in

the program being debugged, not in the debugger.

delete checkpoint checkpoint-id

Delete the previously-saved checkpoint identified by checkpoint-id.

ddd

If you are working on a Linux workstation on campus, or some other PC/Mac that can

render graphics, you can run the debugger named ddd (Data Display Debugger). This

debugger is essentially just a graphical interface for GDB. You can point and click with

your mouse, but the commands have the same names and do the same thing as the

commands in GDB.

