
1

CMSC 313 Spring 2010
Midterm Exam 1

Section 01
March 3, 2010

Name___ Score __________

UMBC Username __

Notes:

a. Please write clearly. Unreadable answers receive no credit.
b. For short answer questions your answer should be short, clear and to

the point, not long and rambling.
c. For True / False question, write the word TRUE or FALSE; do not use

the letters T and F. Using T and F will result in a 2-point deduction.
d. There are no intentional syntax errors in any code provided with this

exam. If you think you see an error that would affect your answer,
please bring it to my attention.

e. You may assume that any necessary .h files have been #included
where necessary.

2

True / False (2 points each)

1. _______________ Both scanf() and fscanf() can be used to read user
input from the standard input.

2. _______________ In C, "false" is always equivalent to 0 and "true" is always

equivalent to 1.

3. _______________ In C, functions are uniquely identified by their name, so no two
.c files may have functions with the same name.

4. _______________ The string "Frodo LIVES!" requires 12 bytes of memory.

5. _______________ In C, all functions have global scope.

6. _______________ Other than the function prototypes, there is no difference
between malloc() and calloc().

7. _____________ If p is a pointer to integers and A is an array of integers, then the
statement *p = A[0]; assigns the value stored in A[0] to p.

8. ____________ Given the declaration char name[10] = "Bob", the value
retuned from strlen(name) is 3.

9. _____________ A function prototype tells the compiler the type of the value that is
returned by the function.

10. _____________ typedef is used to give a new name to an existing data type

3

Multiple Choice (2 points each)
 (Write the letter of the best answer in the space provided)

11. ______ In C the length of a string is determined....

[a.] from the declared size of the array which contains it.
[b.] by a length byte stored at the beginning of the string.
[c.] by a null terminator stored at the end of the string.
[d.] by a length byte stored at the end of the string

12. _______ Let p be a pointer to an integer and let n be an int variable. Then after the
assignment p = &n; the value of *p is

[a.] the address of the pointer p
[b.] the value stored in the variable n
[c.] the address of the variable n
[d.] none of the above

13. _______ The expression sizeof(struct foo) refers to

[a.] the number of member variables in struct foo
[b.] the size of the largest member variable in struct foo
[c.] the total size of struct foo in bytes
[d.] the number of pointer members in struct foo

14. _______ What is the advantage of using a pointer to a structure as a parameter to a
function, instead of the structure itself ?

[a.] The code is easier to read.
[b.] It's more efficient because the structure is not copied.
[c.] There is no difference; it is a matter of style which is used.
[d.] Passing a structure as a parameter is not allowed.

15. _______Which of the following can NOT be done with a structure variable ?

[a.] assign from one struct to another using "="
[b.] pass as an argument to a function
[c.] return as the value of a function
[d.] all of the above can be done

4

16. _______ When an index is used that is too large for its array

 [a.] The compiler displays a warning
 [b.] The compiler displays an error
 [c.] Your program usually terminates with a segfault
 [d.] The C runtime environment throws an exception

17. ______ Given the declarations int A[20], *p, x; which of the following
statements is NOT TRUE

 [a.] p = A; is equivalent to p = &A[0];
 [b.] x = p[4]; is equivalent to x = *(p + 4);
 [c.] x = p[3]; is equivalent to x = *(A + 3);
 [d.] x = *A + 7; is equivalent to x = A[7];

18. _______What is the output of the following code fragment?

 int n = 9;
 int *p;
 p = &n;
 n++;
 printf ("%d, %d", *p + 2, n);

 [a.] 11, 9
 [b.] 9, 10
 [c.] 12, 10
 [d.] 11, 10

19. _______ If endpoint is a variable of type struct coordinate, and
x_coord is a member of struct coordinate, and p points to endpoint
then to access the x_coord member of endpoint using p, use the syntax

 [a.] p->x_coord

 [b.] p.x_coord
 [c.] *(p.x_coord)
 [d.] p->endpoint.x_coord

20. _______Given the declaration char string[] = "abcdefg"; what is
output by printf ("%s\n", string + 3);

 [a.] abcdefg + 3
 [b.] abc
 [c.] defg
 [d.] the statement is illegal

5

21. _______ When an array parameter is passed to a function

[a.] the elements of the actual array are copied for the function to use
[b.] the function parameter is a pointer that holds the address of the array
[c.] the programmer must write code which allocates enough space for the
 function to store the array.
[d.] a compiler warning is displayed

22. _______ Given the declarations int x = 7, *p = &x; then the statement
 p = p + 1;

 [a.] adds 1 to p
 [b.] adds 7 to p
 [c.] adds the sizeof (int) to p
 [d.] adds 7 * sizeof(int) to p

23. ________ When a function exits, the values stored in the function's automatic (i.e.
not static) local variables are

 [a.] saved until the next time the function is called
 [b.] reset to 0
 [c.] lost forever
 [d.]. none of the above

24. _______ Given the declarations int x = 7, *px = &x, **ppx = &px;
which of the following is NOT TRUE

 [a.] The value of *px is 7
 [b.] The value of **ppx is 7
 [c.] The value of *ppx is the address of px
 [d.] all of the above are true

25. _______ Which of the following is NOT TRUE

 [a.] malloc() and calloc() both allocated memory from the heap
 [b.] free() is used to return memory to the heap
 [c.] malloc() and calloc() both return NULL if allocation fails
 [d.] memory obtained from malloc() and calloc() is uninitialized

6

The next 5 questions refer to the following declarations:

 STUDENT s1, *pStudent = &s1;
 PERSON p1, *pPerson1 = &p1;
 PERSON p2, *pPerson2 = &p2;

26. _________ The expression s1.p.ssn[3]
 [a.] is a char
 [b.] is an array of char
 [c.] is a pointer to char
 [d.] is illegal and causes a compiler error

27. _______The expression pStudent->weight
 [a.] is an int
 [b.] is equivalent to s1.weight
 [c.] both a and b
 [d.] is illegal and causes a compiler error

28. _______The expression s1.p->age
 [a.] is an int
 [b.] is equivalent to pStudent->p->age
 [c.] both a and b
 [d.] is illegal and causes a compiler error

29. _______The statement p1 = p2;
 [a.] is a structure assignment statement
 [b.] has the same effect as *pPerson1 = *pPerson2;
 [c.] both a and b
 [d.] is illegal and causes a compiler error

30. _______The statement pPerson1 = pPerson2
 [a.] is a structure assignment statement
 [b.] causes pPerson1 to point to p2
 [c.] both a and b
 [d.] is illegal and causes a compiler error

typedef struct person
 {
 char ssn[9];
 int age;
 char *name;
 } PERSON;

typedef struct student
 {
 PERSON p;
 char nickname[20];
 int weight;
 } STUDENT;

7

Short Answer

31. (4 points) If not used carefully, C library functions such as strcpy() and
strcat() that manipulate strings can lead to subtle errors or program
termination (segmentation fault). In two sentences or less, explain why this is so.

__

__

32. (4 points) In no more than two (2) sentences, explain why it is necessary to use the

C string library function strcmp() rather than using the equality operator == to
compare two strings.

__

__

33. (5 points) In no more than two (2) sentences, give a brief description of the task

this function performs on the lines provided. DO NOT describe each line of code
or the individual "steps".

 void mystery(double *dp, int n)

 {
 int k, N = n - 1;
 for (k = 0; k < n / 2; --N, ++k)
 {
 double temp = *(dp + N);
 *(dp + N) = *(dp + k);
 *(dp + k) = temp;
 }
 }

8

34. (4 points) Examine the code in the boxes, then answer the questions below

a. What is the scope of randomInt?

b. What is the lifetime of randomInt?

c. What is the scope of lastRandom?

d. What is the lifetime of lastRandom?

/** main.c **/

extern int randomInt;
void getRandomInt(int x);

static void printRandoms(int n)
{
 int k;
 for (k = 0; k < n; k++)
 {
 getRandomInt(12345);
 printf("%d\n", randomINt);
 }
}

int main()
{
 printRandoms(5);
 return 0;
}

/** random.c **/

int randomInt;

void getRandomInt(int max)
{
 static long lastRandom = 100001;

 lastRandom
 = (lastRandom * 125) % 2796203;

 randomInt = (lastRandom % max) + 1;
}

9

35. (4 points) Some languages (like Java) support a Boolean data type (e.g bool) that
can hold the values "true" and "false" which are often keywords of the language. C
is NOT one of those languages, but a "clever" C programmer can simulate the bool
type as well as true and false. Explain how you might use typedef(s) and / or
#define(s) to simulate the bool type, and the values true, and false in C.

36. (4 points) Examine the code below, then answer the questions that follow.

 int i;
 int *grades[5];

 for (i = 0; i < 5; i++)
 grades[i] = malloc((i + 1) * sizeof(int));

 a. What is the data type of grades? __________________________

 b. What is the data type of grades[1] _________________________

 c. What is the data type of grades[4][2] ? _______________________

 d. How many ints can be stored in grades? ______________________

10

37. (5 points) Fill in the blanks for the function named GetXY() below that prompts
the user for the x- and y-coordinates of a point and "returns" the coordinates via
function parameters. The x- and y-coordinates are integers.

 ________ GetXY(__________, ___________)
{
 printf("Input the x-coordinate: ");

 scanf("%d", ____________);

 printf("Input the y-coordinate: ");

 scanf("%d", ___________);
}

38. (10 points) Fill in the blanks in the function below. This function returns the

largest odd integer from an array of integers, all of which are supposed to be
positive (but you can never be too careful). The function returns -1 if there are no
odd integers in the array.

int LargestOdd (int a[], int size)
{
 int k, largest = ________;

 for (k = 0; k < size; k++)
 {
 assert(____________________);

 if((_________________) && (________________))

 _________________________;

 }

 return largest;
}

