
CMSC 313, Spring 2011
Project 4: Manipulating Bits

Assigned: Mar. 29
Due: Wednesday., Apr. 6, 11:59PM

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of integers. You’ll
do this by solving a series of programming “puzzles.” Many ofthese puzzles are quite artificial, but you’ll
find yourself thinking much more about bits in working your way through them.

2 Logistics

This is an individual project. All handins are electronic. Clarifications and corrections will be posted on the
course Web page. A Blackboard discussion board is also available for your questions.

3 Handout Instructions

Start by copyingdatalab-handout.tar from the course’s public directory
\afs\umbc.edu\users\c\m\cmsc313\pub to a (protected) directory on a Linux machine in which
you plan to do your work. Then give the command

unix> tar xvf datalab-handout.tar

This will cause a number of files to be unpacked in the directory. The only file you will be modifying and
turning in isbits.c .

The bits.c file contains a skeleton for each of nine(9) programming puzzles. Your assignment is
to complete each function skeleton using onlystraightline code for the integer puzzles (i.e., no loops or
conditionals) and a limited number of C arithmetic and logical operators. Specifically, you areonly allowed
to use the following eight operators:

! ˜ & ˆ | + << >>

1

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than
8 bits and use ofunsigned is strictly forbidden. You may not declare variables asunsigned or cast a
variable to beunsigned . See the comments inbits.c for detailed rules and a discussion of appropriate
coding style.

4 The Puzzles

This section describes the puzzles that you will be solving in bits.c .

4.1 Bit Manipulations

Table 1 describes a set of functions that manipulate and testsets of bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max Ops” field gives the maximum number
of operators you are allowed to use to implement each function. See the comments inbits.c for more
details on the desired behavior of the functions. You may also refer to the test functions intests.c . These
are used as reference functions to express the correct behavior of your functions, although they don’t satisfy
the coding rules for your functions.

Name Description Rating Max Ops
anyEvenBit(x) returns 1 if any even numbered bit ofx is 1 2 12
negate(x) returns-x 2 5
reverseBytes(x) reverses the order of the bytes inx 3 25
rotateRight(x, n) Rotatex to the right byn bits 3 25

Table 1: Bit-Level Manipulation Functions.

4.2 Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’scomplement representation of integers. Again,
refer to the comments inbits.c and the reference versions intests.c for more information.

Name Description Rating Max Ops
tmin() returns the minumum two’s complement integer 1 4
isAsciiDigit(x) determines ifx is an Ascii digit character 3 15
subOK(x, y) determines ifx - y will result in overflow 3 20
absValue(x) returns the absolute value ofx 4 10
satAdd(x,y) returns TMAX or TMIN if x + y has positive or negative overflow 4 30

Table 2: Arithmetic Functions

2

5 Evaluation

Your score will be computed out of a maximum of 50 points basedon the following distribution:

25 Correctness points.

18 Performance points.

7 Style points.

Correctness points. The 9 puzzles you must solve have been given a difficulty rating between 1 and 4, such
that their weighted sum totals to 25. We will evaluate your functions using thebtest program, which is
described in the next section. You will get full credit for a puzzle if it passes all of the tests performed by
btest , and no credit otherwise.

Performance points. Our main concern at this point in the course is that you can getthe right answer.
However, we want to instill in you a sense of keeping things asshort and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function
we’ve established a maximum number of operators that you areallowed to use for each function. This limit
is very generous and is designed only to catch egregiously inefficient solutions. You will receive two points
for each correct function that satisfies the operator limit.

Style points. Finally, we’ve reserved 7 points for a subjective evaluation of the style of your solutions and
your commenting. Your solutions should be as clean and straightforward as possible. Your comments should
be informative, but they need not be extensive.

Autograding your work

We have included some autograding tools in the handout directory — btest , dlc , anddriver.pl —
to help you check the correctness of your work.

• btest: This program checks the functional correctness of the functions inbits.c . To build and
use it, type the following two commands:

unix> make
unix> ./btest

Notice that you must rebuildbtest each time you modify yourbits.c file.

You’ll find it helpful to work through the functions one at a time, testing each one as you go. You can
use the-f flag to instructbtest to test only a single function:

unix> ./btest -f subOK

You can feed it specific function arguments using the option flags-1 , -2 , and-3 :

3

unix> ./btest -f subOK -1 26 -2 0xf

Check the fileREADMEfor documentation on running thebtest program.

• dlc: This is a modified version of an ANSI C compiler from the MIT CILK group that you can use
to check for compliance with the coding rules for each puzzle. The typical usage is:

unix> ./dlc bits.c

The program runs silently unless it detects a problem, such as an illegal operator, too many operators,
or non-straightline code in the integer puzzles. Running with the-e switch:

unix> ./dlc -e bits.c

causesdlc to print counts of the number of operators used by each function. Type./dlc -help
for a list of command line options.

• driver.pl: This is a driver program that usesbtest anddlc to compute the correctness and
performance points for your solution. It takes no arguments:

unix> ./driver.pl

Your instructors will usedriver.pl to evaluate your solution.

6 Handin Instructions

• Remove any debugging and extraneous printing code frombits.c .

• To submit yourbits.c file, use the command

unix> make handin USERNAME=YourUserName

whereYourUserName is your UMBC email ID. For example, if your UMBC email isbob@umbc.edu ,
then usebob as yourYourUserName

• If you want to resubmit your code, use the command

unix> make handin USERNAME=YourUserName VERSION=2

Increment the VERSION number for each subsequent submission.

• You can verify your handin by looking in

/afs/umbc.edu/users/c/m/cmsc313/pub/cmsc313_submiss ions/Proj4

You have list and insert permissions in this directory, but no read or write permissions.

4

7 Advice

• Don’t include the<stdio.h> header file in yourbits.c file, as it confusesdlc and results in
some non-intuitive error messages. You will still be able touseprintf in your bits.c file for
debugging without including the<stdio.h> header, althoughgcc will print a warning that you
can ignore.

• Thedlc program enforces a stricter form of C declarations than is the case for C99 or that is enforced
by gcc . In particular, any declaration must appear in a block (whatyou enclose in curly braces) before
any statement that is not a declaration. For example, it willcomplain about the following code:

int foo(int x)
{

int a = x;
a * = 3; / * Statement that is not a declaration * /
int b = a; / * ERROR: Declaration not allowed here * /

}

5

