Digital Logic VIII:
Caching

CMSC 313
Sections 01, 02

12/8/2015

Direct Mapping

.

.

6.4 Cache Memory

The purpose of cache memory is to speed up
accesses by storing recently used data closer to the
CPU, instead of storing it in main memory.

Although cache is much smaller than main memory,
its access time is a fraction of that of main memory.
Unlike main memory, which is accessed by address,
cache is typically accessed by content; hence, it is
often called content addressable memory.

Because of this, a single large cache memory isn’t
always desirable-- it takes longer to search.

rStock. Inc. Copppight © 2014 by Jores & Bartet Laaring, UG




6.4 Cache Memory

» The simplest cache mapping scheme is

direct mapped cache.

In a direct mapped cache consisting of N

blocks of cache, block X of main memory

maps to cache block Y = X mod N.

* Thus, if we have 10 blocks of cache, block 7
of cache may hold blocks 7, 17, 27, 37, . . .

of main memory.

The next slide illustrates this mapping.

© Ockin mages/ShusterStock. nc. Copyright © 2014 by Jones & Bartett Learming, LLC an Ascans

12/8/2015

6.4 Cache Memory

Cache
o0 Block < Block
o I\ 0
+ With direct & B';’CK Q Blc1>ck
S
mappeq cache 10| BoK J\\ Block
consisting of N N
blocks of cache, 11| Block Block
h 3 3
block X of main Biock
memory maps to 4
cache block Y = Blgck
X mod N. T
6
Block
7

5 © Oca ima

Main Memory
000

001
010
on
100
101

110

m

6.4 Cache Memory
Cache Main Memory
Block 0000
Lo |
« Alarger | 25 | oo
example. e

Block

0010

0011

0100

o101

0110

o111

1000

1001

1010

1011

1100

ight © 2014 by Jorms & Bartett Learming, LLC an

Company




6.4 Cache Memory

» To perform direct mapping, the binary main memory
address is partitioned into the fields shown below.
— The offset field uniquely identifies an address within a
specific block.
— The block field selects a unique block of cache.
— The tag field is whatever is left over.

Tag Block Offset

«— Bits in Main Memory Address ———

* The sizes of these fields are determined by characteristics
of both memory and cache.

12/8/2015

6.4 Cache Memory

» To perform direct mapping, the binary main memory
address is partitioned into the fields shown below.
— The offset field uniquely identifies an address within a
specific block.
— The block field selects a unique block of cache.
— The tag field is whatever is left over.

Tag Block Offset
«— Bits in Main Memory Address ———

» The sizes of these fields are determined by characteristics
of both memory and cache.

8 © Ocun images/ShutterStock. Inc. Copyright © 2014 by Jones & Bartiett Learming, LLC an Ascend

6.4 Cache Memory

+ EXAMPLE 6.1 Consider a byte-addressable main
memory consisting of 4 blocks, and a cache with 2
blocks, where each block is 4 bytes.

» This means Block 0 and 2 of main memory map to
Block 0 of cache, and Blocks 1 and 3 of main
memory map to Block 1 of cache.

+ Using the tag, block, and offset fields, we can see
how main memory maps to cache as follows.

9 © Ok imagew/ShusterStock.Inc. Coppight © 2014 by Jores 8 Barfect Leaming, LLC an A




6.4 Cache Memory

< EXAMPLE 6.1 Cont'd Consider a byte-addressable main

memory consisting of 4 blocks, and a cache with 2
blocks, where each block is 4 bytes.
— First, we need to determine the address format for mapping.

Each block is 4 bytes, so the offset field must contain 2 bits; there

are 2 blocks in cache, so the block field must contain 1 bit; this
leaves 1 bit for the tag (as a main memory address has 4 bits
because there are a total of 2=16 bytes).

1 1 2
| tag | block | offset
4
10 ©0din mogeySusirtock, n. Copyright O 2014 by orw & Bt Lo, LI an Ascand

12/8/2015

6.4 Cache Memory
* EXAMPLE 6.1 Cont'd 1 1 2

— Suppose we need to access a | \ag | block ‘ offset

main memory address 31
(0x0011 in binary). If we partition

- 4

0x0011 using the address format P ° | 0 | i |
from Figure a, we get Figure b. g block offsel
— Thus, the main memory address Main Memory Cache Taog‘
0x0011 maps to cache block 0. gk o
-
— Figure ¢ shows this mapping, 0011 j

along with the tag that is also Block 1

stored with the data.

Block 2
c
The next slide illustrates
another mapping Block 3
1 © Ochin mages/Susterstock. Inc. Copyright © 204 by Jores & Bartieet Laarring, LLC an Asce
[0 ] o] 11 | [ 1 [ 0 [ 10
tag block affsel tag block oftset
Main Memory Cache  Tag Fr— Cothe  Tog
0
1
Bock o Y —
T2 lock 0
0011 ] Tag
Block 1
od Block 1
Block 2 N
Block 2 1010
Block 3 Block 3
12 © Ocua images/Shusterstock,Inc. Copyright © 2014 by Jones 8 Bartict Learming, LLC an Ascend Learring Company
i Redbockd




6.4 Cache Memory

« EXAMPLE 6.2 Assume a byte-addressable memory
consists of 214 bytes, cache has 16 blocks, and each
block has 8 bytes. 24

— The number of memory blocks are: Pl

— Each main memory address requires14 bits. Of this 14-bit address
field, the rightmost 3 bits reflect the offset field

— We need 4 bits to select a specific block in cache, so the block
field consists of the middle 4 bits.

— The remaining 7 bits make up the tag field.

11

7 bits 4 bits 3 bits

Tag Block Offsel

14 bits

13

© Ockin mages/Shusterstock. Inc. Copyright © 2014 by Jones & Bartet Laarming, LLC an Asc

12/8/2015

6.4 Cache Memory

* In summary, direct mapped cache maps main
memory blocks in a modular fashion to cache
blocks. The mapping depends on:

* The number of bits in the main memory address
(how many addresses exist in main memory)

* The number of blocks are in cache (which
determines the size of the block field)

* How many addresses (either bytes or words) are
in a block (which determines the size of the
offset field)

14

© Ockin mages/ShusterStock. Inc. Copyright © 2014 by Jones & Bartet Learming, LLC an Ascend L ompany
e flearming com

Fully Associative Mapping

15




6.4 Cache Memory

» Suppose instead of placing memory blocks in
specific cache locations based on memory
address, we could allow a block to go anywhere
in cache.

« In this way, cache would have to fill up before
any blocks are evicted.

» This is how fully associative cache works.

* A memory address is partitioned into only two
fields: the tag and the word.

16 © Ochn images/Shustterstock. Inc. Copyright © 201 by Jores & Bartiett Learming, LLC an Ascend L

12/8/2015

6.4 Cache Memory

» Suppose, as before, we have 14-bit memory
addresses and a cache with 16 blocks, each block
of size 8. The field format of a memory reference
is: 11 bits 3bits

Tag Offset

< 14 bits

* When the cache is searched, all tags are searched
in parallel to retrieve the data quickly.

» This requires special, costly hardware.

17 © Ocun images/ShutterStock. Inc. Copyright © 2014 by Jores & Bartiect Lsarming, LLC an Ascend L

Set Associative Mapping

18




6.4 Cache Memory

Set associative cache combines the ideas of direct
mapped cache and fully associative cache.

An N-way set associative cache mapping is like
direct mapped cache in that a memory reference
maps to a particular location in cache.

Unlike direct mapped cache, a memory reference
maps to a set of several cache blocks, similar to the
way in which fully associative cache works.

Instead of mapping anywhere in the entire cache, a

memory reference can map only to the subset of
cache slots.

19

© O magew's

ek, Inc. Copyright © 2014 by Jones & Bartet Learming, LLC an Ascend Lear

12/8/2015

6.4 Cache Memory

« The number of cache blocks per set in set associative
cache varies according to overall system design.
— For example, a 2-way set associative

cache can be conceptualized as shown in Tag Black 0
the schematic below. Seto
R N Tag
— Each set contains two different memory Black 1
blocks.
Tag
[— Block 2
Seto (o] Block 0 Block 1 g St
» oc) loc Tag
Black 3
Sat 1 IE Block 2 Block 3 1o Te
2 ag
Block 4
Tag Sel2
Sat2 Block 4 Block 5 Tag
Block &
Logical view Linear view

20

© Ockin mages/ShusterStock. nc. Copyright © 2014 by Jones & Bartett Learming, LLC an Ascans

6.4 Cache Memory

* In set associative cache mapping, a memory
reference is divided into three fields: tag, set,
and offset.

» As with direct-mapped cache, the offset field
chooses the word within the cache block, and
the tag field uniquely identifies the memory
address.

* The set field determines the set to which the
memory block maps.

21

Ine Copright © 201 by Jorws & Bars




6.4 Cache Memory

« EXAMPLE 6.5 Suppose we are using 2-way set
associative mapping with a word-addressable main
memory of 214 words and a cache with 16 blocks,
where each block contains 8 words.

then there are 8 sets in cache.

— Thus, the set field is 3 bits, the offset field is 3 bits, and
the tag field is 8 bits.

8 bits 3 bits 3 bits
Tag Set I Offset ‘
< 14 bits >

22

©0din by

12/8/2015

— Cache has a total of 16 blocks, and each set has 2 blocks,

(tock. Inc. Copyright © 2014 by Jorms & Bartiett Leaming, LLC an Ascend Learming Company
e flearming com

Caching Policies

» Cache replacement policy

— For fully associative and set associative mapping
— Which cache block gets kicked out?

— Some schemes: first-in first-out, least recently
used, ...

» Cache write policy

— Write through: always write to main memory
— Write back: write to main memory when replaced

23

Cache Performance

24




6.4 Cache Memory

» The performance of hierarchical memory is
measured by its effective access time (EAT).

+ EAT is a weighted average that takes into account
the hit ratio and relative access times of successive
levels of memory.

* The EAT for a two-level memory is given by:

EAT = H x Accessc + (1-H) x Accessyy.

where H is the cache hit rate and Access¢ and Accessy, are
the access times for cache and main memory, respectively.

25 © 0

12/8/2015

6.4 Cache Memory

« For example, consider a system with a main
memory access time of 200ns supported by a
cache having a 10ns access time and a hit rate of
99%.

* Suppose access to cache and main memory
occurs concurrently. (The accesses overlap.)

* The EAT is:
0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns.

2 ©0dka tmogeute

6.4 Cache Memory

» For example, consider a system with a main memory
access time of 200ns supported by a cache having a
10ns access time and a hit rate of 99%.

« If the accesses do not overlap, the EAT is:
0.99(10ns) + 0.01(10ns + 200ns)
=9.9ns + 2.01ns = 12ns.

 This equation for determining the effective access
time can be extended to any number of memory
levels, as we will see in later sections.

27 © Ok magew/Shusterstock.Inc.




