
12/8/2015

1

Digital Logic VIII:

Caching

CMSC 313

Sections 01, 02

Direct Mapping

2

3

6.4 Cache Memory

• The purpose of cache memory is to speed up

accesses by storing recently used data closer to the

CPU, instead of storing it in main memory.

• Although cache is much smaller than main memory,

its access time is a fraction of that of main memory.

• Unlike main memory, which is accessed by address,

cache is typically accessed by content; hence, it is

often called content addressable memory.

• Because of this, a single large cache memory isn’t

always desirable-- it takes longer to search.

12/8/2015

2

4

• The simplest cache mapping scheme is

direct mapped cache.

• In a direct mapped cache consisting of N

blocks of cache, block X of main memory

maps to cache block Y = X mod N.

• Thus, if we have 10 blocks of cache, block 7

of cache may hold blocks 7, 17, 27, 37, . . .

of main memory.

The next slide illustrates this mapping.

6.4 Cache Memory

5

6.4 Cache Memory

• With direct

mapped cache

consisting of N

blocks of cache,

block X of main

memory maps to

cache block Y =

X mod N.

6

6.4 Cache Memory

• A larger

example.

12/8/2015

3

7

6.4 Cache Memory

• To perform direct mapping, the binary main memory

address is partitioned into the fields shown below.

– The offset field uniquely identifies an address within a

specific block.

– The block field selects a unique block of cache.

– The tag field is whatever is left over.

• The sizes of these fields are determined by characteristics

of both memory and cache.

8

6.4 Cache Memory

• To perform direct mapping, the binary main memory

address is partitioned into the fields shown below.

– The offset field uniquely identifies an address within a

specific block.

– The block field selects a unique block of cache.

– The tag field is whatever is left over.

• The sizes of these fields are determined by characteristics

of both memory and cache.

9

• EXAMPLE 6.1 Consider a byte-addressable main

memory consisting of 4 blocks, and a cache with 2

blocks, where each block is 4 bytes.

• This means Block 0 and 2 of main memory map to

Block 0 of cache, and Blocks 1 and 3 of main

memory map to Block 1 of cache.

• Using the tag, block, and offset fields, we can see

how main memory maps to cache as follows.

6.4 Cache Memory

12/8/2015

4

10

• EXAMPLE 6.1 Cont’d Consider a byte-addressable main

memory consisting of 4 blocks, and a cache with 2

blocks, where each block is 4 bytes.

– First, we need to determine the address format for mapping.

Each block is 4 bytes, so the offset field must contain 2 bits; there

are 2 blocks in cache, so the block field must contain 1 bit; this

leaves 1 bit for the tag (as a main memory address has 4 bits

because there are a total of 24=16 bytes).

6.4 Cache Memory

11

• EXAMPLE 6.1 Cont'd

– Suppose we need to access

main memory address 316

(0x0011 in binary). If we partition

0x0011 using the address format

from Figure a, we get Figure b.

– Thus, the main memory address

0x0011 maps to cache block 0.

– Figure c shows this mapping,

along with the tag that is also

stored with the data.

6.4 Cache Memory

a

b

The next slide illustrates

another mapping.

c

12

6.4 Cache Memory

12/8/2015

5

13

• EXAMPLE 6.2 Assume a byte-addressable memory

consists of 214 bytes, cache has 16 blocks, and each

block has 8 bytes.

– The number of memory blocks are:

– Each main memory address requires14 bits. Of this 14-bit address

field, the rightmost 3 bits reflect the offset field

– We need 4 bits to select a specific block in cache, so the block

field consists of the middle 4 bits.

– The remaining 7 bits make up the tag field.

6.4 Cache Memory

14

• In summary, direct mapped cache maps main

memory blocks in a modular fashion to cache

blocks. The mapping depends on:

• The number of bits in the main memory address

(how many addresses exist in main memory)

• The number of blocks are in cache (which

determines the size of the block field)

• How many addresses (either bytes or words) are

in a block (which determines the size of the

offset field)

6.4 Cache Memory

Fully Associative Mapping

15

12/8/2015

6

16

• Suppose instead of placing memory blocks in

specific cache locations based on memory

address, we could allow a block to go anywhere

in cache.

• In this way, cache would have to fill up before

any blocks are evicted.

• This is how fully associative cache works.

• A memory address is partitioned into only two

fields: the tag and the word.

6.4 Cache Memory

17

• Suppose, as before, we have 14-bit memory

addresses and a cache with 16 blocks, each block

of size 8. The field format of a memory reference

is:

• When the cache is searched, all tags are searched

in parallel to retrieve the data quickly.

• This requires special, costly hardware.

6.4 Cache Memory

Set Associative Mapping

18

12/8/2015

7

19

• Set associative cache combines the ideas of direct

mapped cache and fully associative cache.

• An N-way set associative cache mapping is like

direct mapped cache in that a memory reference

maps to a particular location in cache.

• Unlike direct mapped cache, a memory reference

maps to a set of several cache blocks, similar to the

way in which fully associative cache works.

• Instead of mapping anywhere in the entire cache, a

memory reference can map only to the subset of

cache slots.

6.4 Cache Memory

20

• The number of cache blocks per set in set associative

cache varies according to overall system design.

6.4 Cache Memory

– For example, a 2-way set associative

cache can be conceptualized as shown in

the schematic below.

– Each set contains two different memory

blocks.

Logical view Linear view

21

• In set associative cache mapping, a memory

reference is divided into three fields: tag, set,

and offset.

• As with direct-mapped cache, the offset field

chooses the word within the cache block, and

the tag field uniquely identifies the memory

address.

• The set field determines the set to which the

memory block maps.

6.4 Cache Memory

12/8/2015

8

22

• EXAMPLE 6.5 Suppose we are using 2-way set

associative mapping with a word-addressable main

memory of 214 words and a cache with 16 blocks,

where each block contains 8 words.

– Cache has a total of 16 blocks, and each set has 2 blocks,

then there are 8 sets in cache.

– Thus, the set field is 3 bits, the offset field is 3 bits, and

the tag field is 8 bits.

6.4 Cache Memory

Caching Policies

• Cache replacement policy

– For fully associative and set associative mapping

– Which cache block gets kicked out?

– Some schemes: first-in first-out, least recently

used, ...

• Cache write policy

– Write through: always write to main memory

– Write back: write to main memory when replaced

23

Cache Performance

24

12/8/2015

9

25

• The performance of hierarchical memory is

measured by its effective access time (EAT).

• EAT is a weighted average that takes into account

the hit ratio and relative access times of successive

levels of memory.

• The EAT for a two-level memory is given by:

EAT = H  AccessC + (1-H)  AccessMM.

where H is the cache hit rate and AccessC and AccessMM are

the access times for cache and main memory, respectively.

6.4 Cache Memory

26

• For example, consider a system with a main

memory access time of 200ns supported by a

cache having a 10ns access time and a hit rate of

99%.

• Suppose access to cache and main memory

occurs concurrently. (The accesses overlap.)

• The EAT is:

0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns.

6.4 Cache Memory

27

• For example, consider a system with a main memory

access time of 200ns supported by a cache having a

10ns access time and a hit rate of 99%.

• If the accesses do not overlap, the EAT is:

0.99(10ns) + 0.01(10ns + 200ns)

= 9.9ns + 2.01ns = 12ns.

• This equation for determining the effective access

time can be extended to any number of memory

levels, as we will see in later sections.

6.4 Cache Memory

