

Appendix A - Digital Logic

Input and Next state state at and output at time t time t+1

 $s_2 \ s_1 \ s_0 \ z$

0 0 1 0

d (d d d d (b) © 1999 M. Murdoo

a and V. H

 $_{2} s_{1} s_{0}$

0 1

 $\begin{array}{c} 0 & 0 \\ 0 & 1 \end{array}$

Finite State Machine Simplification

8

	Circuit Minimization	
9		

15 CAD tools are available if you are serious

Karnaugh Maps

- Implicant: rectangle with 1, 2, 4, 8, 16 ... 1's
- Prime Implicant: an implicant that cannot be
- extended into a larger implicant
- Essential Prime Implicant: the only prime implicant that covers some 1
- K-map Algorithm (not from M&H):
- 1. Find ALL the prime implicants. Be sure to check every 1 and to use don't cares.
- 2. Include all essential prime implicants.
- 3. Try all possibilities to find the minimum cover for the remaining 1's.

the rema

Circuit Minimization is Hard

- Unix systems store passwords in encrypted form.
 User types x, system computes f(x) and looks for f(x) in a file
- Suppose we use 64-bit passwords and I want to find the password x such that f(x) = y.
- Let $g_i(x) = 0$ if f(x) = y and the ith bit of x is 0.
- 1 otherwise
- If the ith bit of x is 1, then g_i (x) outputs 1 for every x and g_i (x) has a very, very simple circuit.
- If you can simplify every circuit quickly, then you can crack passwords quickly.

Simplifying Finite State Machines

- State Reduction: equivalent FSM with fewer states
- State Assignment: choose an assignment of bit patterns to states (e.g., A is 010) that results in a smaller circuit
- Choice of flip-flops: use D flip-flops, J-K flipflops or a T flip-flops? a good choice could lead to simpler circuits.

18

State Reduction Algorithm

- 1. Use a 2-dimensional table an entry for each pair of states.
- 2. Two states are "distinguished" if:
- a. States X and Y of a finite state machine M are distinguished if there exists an input r such that the output of M in state X reading input r is different from the output of M in state Y reading input r.
- b. States X and Y of a finite state machine are distinguished if there exists an input r such that M in state X reading input r goes to state X', M in state Y reading input r goes to state Y' and we already know that X' and Y' are distinguished states.
- 3. For each pair (X,Y), check if X and Y are distinguished using the definition above.
- 4. At the end of the algorithm, states that are not found to be distinguished are in fact equivalent.

22

State Reduction Table

- An x entry indicates that the pair of states are known to be distinguished.
- A & B are equivalent, C & D are equivalent

23

State Reduction Algorithm Performance

- As stated, the algorithm takes $O(n^4)$ time for a FSM with n states, because each pass takes $O(n^2)$ time and we make at most $O(n^2)$ passes.
- A more clever implementation takes O(n²) time.
- The algorithm produces a FSM with the fewest number states possible.
- Performance and correctness can be proven.

25

State Assignment

Two state	e assignment	s for machine M_2 .	
P.S. A B C D	$\begin{array}{c c} & X \\ 0 & 1 \\ \hline & B/1 & A/1 \\ C/0 & D/1 \\ C/0 & D/0 \\ B/1 & A/0 \\ \hline \\ Machine M_2 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

			7.	ste	ate			
	s2	s1	s0	x	s2'	s1'	s0'	z
	0	0	0	0	0	0	1	0
1	0	0	0	1	0	1	0	0
2		0	1	0	0	1	1	0
3	0	0	1	1	1	0	0	0
4	0	1	0	0	1	0	1	0
5		1	0	1	1	1	0	0
e	0	1	1	0	0	1	1	0
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	1	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	0	1	1	0
11	1	0	1	1	1	0	0	1
12	1	1	0	0	1	0	1	1
13	1	1	0	1	1	1	0	0
14	1	1	1	0	d	d	d	d
15	1	1	1	1	d	d	d	d
	-	000)		Е	-	10	D
	=	001			F	-	10	1
	=	010)		G	=	110	D

Improved Sequence Detector
• Textbook formulas for the 6-state FSM:
s2'= s2 s0 + s1
$s1' = \overline{s2} \overline{s1} x + s2 \overline{s0} x$
$s0' = \overline{s2} \overline{s1} \overline{x} + s0 x + s2 \overline{s0} + s1 x$
$z = s2 \overline{s0} x + s1 s0 x + s2 s0 \overline{x}$
New formulas for the 6-state FSM:
$s2' = (\overline{s0} + x)(s2 + s1 + s0)$
$s1' = \overline{s0} x$
$s0' = \overline{x}$
$z = s2 \overline{s1} x + s2 s1 \overline{x}$
UNIC, CMSCIII, Richard Chang echang@umbc.edu>

			7-state nev									ew	v 6-state						
	s2	s 1	s0	x	s2'	s1'	s0'	z		s2	s1	s0	x	s2'	s1'	s0'	z		
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0		
1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0		
2	0	0	1	0	0	1	1	0	2	0	0	1	0	0	0	1	0		
3	0	0	1	1	1	0	0	0	3	0	0	1	1	1	0	0	0		
4	0	1	0	0	1	0	1	0	4	0	1	0	0	1	0	1	0		
5	0	1	0	1	1	1	0	0	5	0	1	0	1	1	1	0	0		
6	0	1	1	0	0	1	1	0	6	0	1	1	0	d	d	d	d		
7	0	1	1	1	1	0	0	0	7	0	1	1	1	d	d	d	d		
8	1	0	0	0	1	0	1	0	8	1	0	0	0	1	0	1	0		
9	1	0	0	1	1	1	0	1	9	1	0	0	1	1	1	0	1		
10	1	0	1	0	0	1	1	0	10	1	0	1	0	0	0	1	0		
11	1	0	1	1	1	0	0	1	11	1	0	1	1	1	0	0	1		
12	1	1	0	0	1	0	1	1	12	1	1	0	0	1	0	1	1		
13	1	1	0	1	1	1	0	0	13	1	1	0	1	1	1	0	0		
14	1	1	1	0	d	d	d	d	14	1	1	1	0	d	d	d d	d		
15	1	1	1	1	d	d	d	d	15	1				a	d	a	a		
	=	000			E	-	100		•		000			Е	=	100			
						-	10		-		001			F	=	10			
	2	010			G	-	110		;		010			G	=	110)		

					8	2 s	l s0	х	s21	s1*	s0'	z	j2	k2	j1	k1	j0	k0	
				(9 (0	0	0	0	-1	0	0	d	0	đ	-1	d	
						0 (0	-1	0	1	0	0	0	d	1	đ	0	d	
				1		9 (2 1	-0	0	0	-1	0	0	d	0	d	d	0	
				3		9 (> 1	1	-1	0	0	0	1	d	0	đ	d	1	
				4		5	1 0	0	1	0	-1	0	1	d	d	-1	1	d	
				-	-	0	0	- 1	1	1	0	0	1	d	d	0	0	d	
						9	1	-0	đ	d	d	đ	d	d	đ	đ	d	d	
				1		9	1 1	-1	đ	đ	d	đ	d	d	d	đ	d	d	
				1	:	1 (0 0	0	- 1	0	1	0	d	0	0	đ	1	d	
						1 (0 0	-1	-1	1	0	1	đ	0	1	đ	0	d	
				10		1 (3 1	0	0	0	1	0	đ	-1	0	đ	đ	0	
Q	Q	J	К	1		1 (> 1	- 1	1	0	0	1	đ	0	0	đ	đ	1	
0	0	0	đ	12	-	1	0			0	-1	1	đ	0	đ	-1	-1	d	
0	1	1	d	13		1	1 0			-1	0	0	đ	0	đ	0	0	d	
1	0	đ	1	1		1	1	0	đ	đ	d	đ	đ	đ	đ	đ	đ	đ	
1	1	đ	0	1.	5	1	1 1	1	đ	d	d	đ	d	d	đ	đ	d	d	

