
11/24/2015

1

Digital Logic V:

Finite State Machine Design

CMSC 313

Sections 01, 02

Example: Sequence Detector

2

A-3 Appendix A - Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: A Sequence Detector

• Example: Design a machine that outputs a 1 when exactly two of

the last three inputs are 1.

• e.g. input sequence of 011011100 produces an output sequence of

001111010.

• Assume input is a 1-bit serial line.

• Use D flip-flops and 8-to-1 Multiplexers.

• Start by constructing a state transition diagram (next slide).

11/24/2015

2

A-4 Appendix A - Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Transition
Diagram

• Design a machine that

outputs a 1 when exactly

two of the last three

inputs are 1.

A-5 Appendix A - Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Table

A-6 Appendix A - Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Assignment

11/24/2015

3

7

Finite State Machine Simplification

8

Circuit Minimization

9

11/24/2015

4

10 11 12

11/24/2015

5

13 14

Notes on K-maps

• Also works for POS

• Takes 2n time for formulas with n variables

• Only optimizes two-level logic

– Reduces number of terms, then number of literals

in each term

• Assumes inverters are free

• Does not consider minimizations across functions

• Circuit minimization is generally a hard problem

• Quine-McCluskey can be used with more

variables

• CAD tools are available if you are serious15

11/24/2015

6

Karnaugh Maps

• Implicant: rectangle with 1, 2, 4, 8, 16 ... 1’s

• Prime Implicant: an implicant that cannot be

• extended into a larger implicant

• Essential Prime Implicant: the only prime

implicant that covers some 1

• K-map Algorithm (not from M&H):

1. Find ALL the prime implicants. Be sure to check

every 1 and to use don’t cares.

2. Include all essential prime implicants.

3. Try all possibilities to find the minimum cover for

the remaining 1’s.
16

Circuit Minimization is Hard

• Unix systems store passwords in encrypted form.

– User types x, system computes f(x) and looks for

f(x) in a file

• Suppose we use 64-bit passwords and I want to

find the password x such that f(x) = y.

• Let gi(x) = 0 if f(x) = y and the ith bit of x is 0.

• 1 otherwise

• If the ith bit of x is 1, then gi (x) outputs 1 for every

x and gi (x) has a very, very simple circuit.

• If you can simplify every circuit quickly, then you

can crack passwords quickly.
17

Simplifying Finite State Machines

• State Reduction: equivalent FSM with fewer

states

• State Assignment: choose an assignment of bit

patterns to states (e.g., A is 010) that results in a

smaller circuit

• • Choice of flip-flops: use D flip-flops, J-K flip-

flops or a T flip-flops? a good choice could lead

to simpler circuits.

18

11/24/2015

7

State Reduction

19

B-20 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State Reduction

• Description of state machine M0 to be reduced.

21

11/24/2015

8

State Reduction Algorithm

1. Use a 2-dimensional table — an entry for each pair of

states.

2. Two states are "distinguished" if:

a. States X and Y of a finite state machine M are distinguished if

there exists an input r such that the output of M in state X reading

input r is different from the output of M in state Y reading input r.

b. States X and Y of a finite state machine are distinguished if there

exists an input r such that M in state X reading input r goes to

state X', M in state Y reading input r goes to state Y‘ and we

already know that X' and Y' are distinguished states.

3. For each pair (X,Y), check if X and Y are distinguished

using the definition above.

4. At the end of the algorithm, states that are not found to be

distinguished are in fact equivalent.

22

State Reduction Table

• An x entry indicates that the pair of states are

known to be distinguished.

• A & B are equivalent, C & D are equivalent

23 24

11/24/2015

9

State Reduction Algorithm Performance

• As stated, the algorithm takes O(n4) time for a

FSM with n states, because each pass takes

O(n2) time and we make at most O(n2) passes.

• A more clever implementation takes O(n2)

time.

• The algorithm produces a FSM with the

fewest number states possible.

• Performance and correctness can be proven.

25

State Assignment

26

B-27 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

The State Assignment Problem

• Two state assignments for machine M2.

11/24/2015

10

B-28 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State Assignment SA0

• Boolean equations for machine M2 using state assignment SA0.

B-29 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State Assignment SA1

• Boolean equations for machine M2 using state assignment SA1.

State Assignment Heuristics

• No known efficient alg. for best state assignment

• Some heuristics (rules of thumb):

– The initial state should be simple to reset — all zeroes or all ones.

– Minimize the number of state variables that change on each

transition.

– Maximize the number of state variables that don't change on each

transition.

– Exploit symmetries in the state diagram.

– If there are unused states (when the number of states s is not a

power of 2), choose the unused state variable combinations

carefully. (Don't just use the first s combination of state variables.)

– Decompose the set of state variables into bits or fields that have

well-defined meaning with respect to the input or output behavior.

– Consider using more than the minimum number of states to

achieve the objectives above.
30

11/24/2015

11

Apply State Reduction & State Assignment

to Sequence Detector

31

B-32 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Transition
Diagram

B-33 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Table

11/24/2015

12

34

B-35 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector Reduced State
Table

36

11/24/2015

13

B-37 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Assignment

B-38 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector K-Maps

• K-map
reduction of
next state
and output
functions for
sequence
detector.

39

11/24/2015

14

40 41 42

11/24/2015

15

43 44 45

11/24/2015

16

Choice of Flip-Flop <OPTIONAL>

46

B-47 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Excitation Tables

• Each table shows the settings that must be applied at the inputs
at time t in order to change the outputs at time t+1.

B-48 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Serial Adder

11/24/2015

17

B-49 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Serial Adder Next-State Functions

• Truth table showing next-state functions for a serial adder for D, S-
R, T, and J-K flip-flops. Shaded functions are used in the example.

B-50 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

J-K Flip-Flop Serial Adder Circuit

B-51 Appendix B - Reduction of Digital Logic

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

D Flip-Flop Serial Adder Circuit

11/24/2015

18

Consider Flip-Flop Choice in

Sequence Detector <OPTIONAL>

52 53 54

11/24/2015

19

55 56 57

11/24/2015

20

58 59 60

