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Digital Logic V:

Finite State Machine Design

CMSC 313

Sections 01, 02

Example: Sequence Detector
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Example: A Sequence Detector

•  Example: Design a machine that outputs a 1 when exactly two of 

the last three inputs are 1.

•  e.g. input sequence of 011011100 produces an output sequence of  

001111010.

•  Assume input is a 1-bit serial line.

•  Use D flip-flops and 8-to-1 Multiplexers.

•  Start by constructing a state transition diagram (next slide).
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Sequence Detector State Transition 
Diagram

•  Design a machine that 

outputs a 1 when exactly 

two of the last three 

inputs are 1.
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Sequence Detector State Table
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Sequence Detector State Assignment
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Finite State Machine Simplification

8

Circuit Minimization
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Notes on K-maps

• Also works for POS

• Takes 2n time for formulas with n variables

• Only optimizes two-level logic

– Reduces number of terms, then number of literals 

in each term

• Assumes inverters are free

• Does not consider minimizations across functions

• Circuit minimization is generally a hard problem

• Quine-McCluskey can be used with more 

variables

• CAD tools are available if you are serious15
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Karnaugh Maps

• Implicant: rectangle with 1, 2, 4, 8, 16 ... 1’s

• Prime Implicant: an implicant that cannot be

• extended into a larger implicant

• Essential Prime Implicant: the only prime 

implicant that covers some 1

• K-map Algorithm (not from M&H):

1. Find ALL the prime implicants. Be sure to check 

every 1 and to use don’t cares.

2. Include all essential prime implicants.

3. Try all possibilities to find the minimum cover for 

the remaining 1’s.
16

Circuit Minimization is Hard

• Unix systems store passwords in encrypted form.

– User types x, system computes f(x) and looks for 

f(x) in a file

• Suppose we use 64-bit passwords and I want to 

find the password x such that f(x) = y.

• Let gi(x) = 0 if f(x) = y and the ith bit of x is 0.

• 1 otherwise

• If the ith bit of x is 1, then gi (x) outputs 1 for every 

x and gi (x) has a very, very simple circuit.

• If you can simplify every circuit quickly, then you 

can crack passwords quickly.
17

Simplifying Finite State Machines

• State Reduction: equivalent FSM with fewer 

states

• State Assignment: choose an assignment of bit 

patterns to states (e.g., A is 010) that results in a 

smaller circuit

• • Choice of flip-flops: use D flip-flops, J-K flip-

flops or a T flip-flops? a good choice could lead 

to simpler circuits.

18
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State Reduction
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State Reduction

• Description of state machine M0 to be reduced.

21
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State Reduction Algorithm

1. Use a 2-dimensional table — an entry for each pair of 

states.

2. Two states are "distinguished" if:

a. States X and Y of a finite state machine M are distinguished if 

there exists an input r such that the output of M in state X reading 

input r is different from the output of M in state Y reading input r.

b. States X and Y of a finite state machine are distinguished if there 

exists an input r such that M in state X reading input r goes to 

state X', M in state Y reading input r goes to state Y‘ and we 

already know that X' and Y' are distinguished states.

3. For each pair (X,Y), check if X and Y are distinguished 

using the definition above.

4. At the end of the algorithm, states that are not found to be 

distinguished are in fact equivalent.

22

State Reduction Table

• An x entry indicates that the pair of states are 

known to be distinguished.

• A & B are equivalent, C & D are equivalent

23 24
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State Reduction Algorithm Performance

• As stated, the algorithm takes O(n4) time for a 

FSM with n states, because each pass takes 

O(n2) time and we make at most O(n2) passes.

• A more clever implementation takes O(n2) 

time.

• The algorithm produces a FSM with the 

fewest number states possible.

• Performance and correctness can be proven.
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State Assignment
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The State Assignment Problem

• Two state assignments for machine M2.
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State Assignment SA0

• Boolean equations for machine M2 using state assignment SA0.
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State Assignment SA1

• Boolean equations for machine M2 using state assignment SA1.

State Assignment Heuristics

• No known efficient alg. for best state assignment

• Some heuristics (rules of thumb):

– The initial state should be simple to reset — all zeroes or all ones.

– Minimize the number of state variables that change on each 

transition.

– Maximize the number of state variables that don't change on each 

transition.

– Exploit symmetries in the state diagram.

– If there are unused states (when the number of states s is not a 

power of 2), choose the unused state variable combinations 

carefully. (Don't just use the first s combination of state variables.)

– Decompose the set of state variables into bits or fields that have 

well-defined meaning with respect to the input or output behavior.

– Consider using more than the minimum number of states to 

achieve the objectives above.
30
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Apply State Reduction & State Assignment 

to Sequence Detector

31
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Sequence Detector State Transition 
Diagram
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Sequence Detector State Table
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Sequence Detector Reduced State 
Table

36
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Sequence Detector State Assignment
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Sequence Detector K-Maps

• K-map 
reduction of 
next state 
and output 
functions for 
sequence 
detector.

39
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Choice of Flip-Flop <OPTIONAL>
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Excitation Tables

• Each table shows the settings that must be applied at the inputs 
at time t in order to change the outputs at time t+1.
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Serial Adder
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Serial Adder Next-State Functions

• Truth table showing next-state functions for a serial adder for D, S-
R, T, and J-K flip-flops. Shaded functions are used in the example.
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J-K Flip-Flop Serial Adder Circuit
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D Flip-Flop Serial Adder Circuit
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Consider Flip-Flop Choice in

Sequence Detector <OPTIONAL>
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