

Example: A Sequence Detector

Example:: Design a machine that outputs a 1 when exactly two of

- e.g. input sequence of 011011100 produces an output sequence of -e.g. input
- Assume input is a 1 -bit serial line.
- Use D flip-flops and 8-to-1 Multiplexers.
- Start by constructing a state transition diagram (next slide).

-1993 M. Mrrococa and. . Haring
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes on K-maps

- Also works for POS
- Takes 2^{n} time for formulas with n variables
- Only optimizes two-level logic
- Reduces number of terms, then number of literals in each term
- Assumes inverters are free
- Does not consider minimizations across functions
- Circuit minimization is generally a hard problem
- Quine-McCluskey can be used with more variables
${ }^{9}$ CAD tools are available if you are serious
\qquad

Karnaugh Maps

- Implicant: rectangle with $1,2,4,8,16 \ldots 1$'s
- Prime Implicant: an implicant that cannot be
- extended into a larger implicant
- Essential Prime Implicant: the only prime implicant that covers some 1
- K-map Algorithm (not from M\&H):

1. Find ALL the prime implicants. Be sure to check every 1 and to use don't cares.

Circuit Minimization is Hard

- Unix systems store passwords in encrypted form. - User types x, system computes $f(x)$ and looks for $f(x)$ in a file
- Suppose we use 64-bit passwords and I want to find the password x such that $f(x)=y$.
every 1 and to use don't cares.

2. Include all essential prime implicants.
3. Try all possibilities to find the minimum cover for the remaining 1 's.
16

- Let $g_{i}(x)=0$ if $f(x)=y$ and the $i^{\text {th }}$ bit of x is 0
- 1 otherwise
- If the $\mathrm{it}^{\text {th }}$ bit of x is 1 , then $\mathrm{g}_{\mathrm{i}}(\mathrm{x})$ outputs 1 for every x and $g_{i}(x)$ has a very, very simple circuit.
- If you can simplify every circuit quickly, then you ${ }_{17}$ can crack passwords quickly.

Simplifying Finite State Machines

- State Reduction: equivalent FSM with fewer states
- State Assignment: choose an assignment of bit patterns to states (e.g., A is 010) that results in a smaller circuit
- Choice of flip-flops: use D flip-flops, J-K flipflops or a T flip-flops? a good choice could lead to simpler circuits.
${ }_{18}$
\qquad

State Reduction	
19	

- Description of state machine M_{0} to be reduced.

Input		X	
Present state	0	1	
A	$\mathrm{C} / 0$	$\mathrm{E} / 1$	
B	$\mathrm{D} / 0$	$\mathrm{E} / 1$	
C	$\mathrm{C} / 1$	$\mathrm{~B} / 0$	
D	$\mathrm{C} / 1$	$\mathrm{~A} / 0$	
E	$\mathrm{~A} / 0$	$\mathrm{C} / 1$	

State Reduction Example: original transition diagram

\qquad

State Reduction Algorithm

1. Use a 2-dimensional table - an entry for each pair of states.
2. Two states are "distinguished" if:
a. States X and Y of a finite state machine M are distinguished if there exists an input r such that the output of M in state X reading
input ris different from the output of M in state Y reading input r. b. States X and Y of a finite state machine are distinguished if there . States X and Y of a finite state machine are distinguished if there state X^{\prime}, M in state Y reading input r goes to state Y^{\prime} and $w e$ aready know that X^{\prime} and Y^{\prime} are distinguished states,
ald
3. For each pair (X, Y), check if X and Y are distinguished using the definition above.
4. At the end of the algorithm, states that are not found to be distinguished are in fact equivalent.
22

State Reduction Example: reduced transition diagram

\qquad

State Reduction Algorithm Performance

- As stated, the algorithm takes $O\left(n^{4}\right)$ time for a FSM with n states, because each pass takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time and we make at most $\mathrm{O}\left(\mathrm{n}^{2}\right)$ passes.
- A more clever implementation takes $O\left(\mathrm{n}^{2}\right)$ time.
- The algorithm produces a FSM with the fewest number states possible.
- Performance and correctness can be proven.
appendix B - Reduction ot Digital Logic
The State Assignment Problem
- Two state assignments for machine M_{2}.

$\begin{array}{ll} \text { Input } \\ \mathrm{S}_{0} \mathrm{~S}_{1} \\ \hline \end{array}$	${ }_{0}{ }^{X} 1$	$\begin{aligned} & \text { Input } \\ & \mathrm{S}_{0} \mathrm{~S}_{1} \end{aligned}$	${ }_{0}{ }^{X}{ }_{0} 1$
A: 00	01/1 00/1	A: 00	01/1 00/1
B: 01	10/0 11/1	析	11/0 10/1
C: 10	10/0 11/0	C: 11	11/0 10/0
D: 11	01/1 00/0	D: 10	01/1 00/0

\qquad

State Assignment Heuristics

- No known efficient alg. for best state assignment
- Some heuristics (rules of thumb):
- The initial state should be simple to reset - all zeroes or all ones.
- Minimize the number of state variables that change on each
transition.
- Maximize the number of state variables that don't change on each transition.
- If there are unused states (when the number of states s is not a power of 2), choose the unused state variable combinations carefully. (Don't just use the first s combination of state variables.) - Decompose the set of state variables into bits or fields that have
well-defined meaning with respect to the input or output behavior. Consider using more than the minimum number of states to achieve the objectives above.
${ }_{30}$
,

Apply State Reduction \& State Assignment to Sequence Detector

\qquad

Sequence Detector State Reduction Table

6-State Sequence Detector

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Improved Sequence Detector?

- Formulas from the 7-state FSM:
$\mathrm{s} 2^{\prime}=(\overline{\mathrm{s} 0}+\mathrm{x})(\mathrm{s} 2+\mathrm{s} 1+\mathrm{s} 0)$
s1' $=\overline{\mathrm{s} 0} \mathrm{x}+\mathrm{so} \overline{\mathrm{x}}=\mathrm{so}$ xor x
so $0^{\prime}=\bar{x}$
$\mathrm{z}=\mathrm{s} 2 \overline{\mathrm{~s} 1} \mathrm{x}+\mathrm{s} 2 \mathrm{~s} 1 \overline{\mathrm{x}}$
- Formulas from the 6-state FSM:
$\mathrm{s}^{\prime}{ }^{\prime}=\mathrm{s} 2 \mathrm{so} 0 \mathrm{~s} 1$
$\mathrm{s} 1^{\prime}=\overline{\mathrm{s} 2} \overline{\mathrm{~s} 1} \mathrm{x}+\mathrm{s} 2 \overline{\mathrm{so}} \mathrm{x}$
$\mathrm{s} 0^{\prime}=\overline{\mathrm{s} 2} \overline{\mathrm{~s} 1} \overline{\mathrm{x}}+\mathrm{s} 0 \mathrm{x}+\mathrm{s} 2 \overline{\mathrm{~s} 0}+\mathrm{s} 1 \mathrm{x}$
$\mathrm{z}=\mathrm{s} 2 \overline{\mathrm{~s} 0} \mathrm{x}+\mathrm{s} 1 \mathrm{~s} 0 \mathrm{x}+\mathrm{s} 2$ so $\overline{\mathrm{x}}$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Improved Sequence Detector

- Textbook formulas for the 6-state FSM:
s2' $=$ s2 s0 + s1
$\mathrm{s} 1^{\prime}=\overline{\mathrm{s} 2} \overline{\mathrm{~s} 1} \mathrm{x}+\mathrm{s} 2 \overline{\mathrm{~s} 0} \mathrm{x}$
$\mathrm{s} 0^{\prime}=\overline{\mathrm{s} 2} \overline{\mathrm{~s} 1} \overline{\mathrm{x}}+\mathrm{s} 0 \mathrm{x}+\mathrm{s} 2 \overline{\mathrm{~s} 0}+\mathrm{s} 1 \mathrm{x}$
$z=s 2 \bar{s} 0 x+s 1$ so $x+s 2$ so \bar{x}
- New formulas for the 6 -state FSM:
$2^{\prime}=(\overline{s 0}+x)(s 2+s 1+s 0)$
s $1^{\prime}=\overline{\mathrm{s} 0} \mathrm{x}$
so $0^{\prime}=\bar{x}$
$\mathrm{z}=\mathrm{s} 2 \overline{\mathrm{~s} 1} \mathrm{x}+\mathrm{s} 2 \mathrm{~s} 1 \overline{\mathrm{x}}$

\qquad

Choice of Flip-Flop <OPTIONAL>

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Improved Sequence Detector

- Formulas for the 6-state FSM with D Flip-flops:
$s 2^{\prime}=(\bar{s} 0+x)(s 2+s 1+s 0)$
$s 1^{\prime}=\overline{s 0} x$
so $0^{\prime}=\bar{x}$
- Formulas for the 6 -state FSM with J-K Flip-flops:
$\mathrm{J} 2=\mathrm{s} 1+\mathrm{so} \mathrm{x} \quad \mathrm{K} 2=\mathrm{s} 0 \overline{\mathrm{x}}$
$J 1=\overline{\mathrm{s} 0} \mathrm{x} \quad \mathrm{K} 1=\overline{\mathrm{x}}$
ло $=\bar{x} \quad$ ко $=x$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

