

- Combinational logic circuits are perfect for situations when we require the immediate application of a Boolean function to a set of inputs.
- There are other times, however, when we need a circuit to change its value with consideration to its current state as well as its inputs.
 - These circuits have to "remember" their current state.

5

Sequential logic circuits provide this functionality for us.

© 2012 Jones & Bartlett Learning, LLC www.jblearning.com

- As the name implies, sequential logic circuits require a means by which events can be sequenced.
- State changes are controlled by clocks.
 A "clock" is a special circuit that sends electrical pulses through a circuit.
- Clocks produce electrical waveforms such as the one shown below.

- State changes occur in sequential circuits only when the clock ticks.
- Circuits can change state on the rising edge, falling edge, or when the clock pulse reaches its highest voltage.

3.6 Sequential Circuits

- Circuits that change state on the rising edge, or falling edge of the clock pulse are called *edge*-*triggered*.
- Level-triggered circuits change state when the clock voltage reaches its highest or lowest level.

3.6 Sequential Circuits To retain their state values, sequential circuits rely on *feedback*. Feedback in digital circuits occurs when an output is looped back to the input.

 A simple example of this concept is shown below.
 If Q is 0 it will always be 0, if it is 1, it will always be 1. Why?

© 2012 Jones & Bartlett Learning, L www.jblearning.cr

- You can see how feedback works by examining the most basic sequential logic components, the SR flip-flop.
- The "SR" stands for set/reset.
- The internals of an SR flip-flop are shown below, along with its block diagram.

- If we can be sure that the inputs to an SR flip-flop will never both be 1, we will never have an unstable circuit. This may not always be the case.
- The SR flip-flop can be modified to provide a stable state when both inputs are 1.

Latches vs. Flip-Flops

Latch

- Output changes right after the input changes
- No reference to clocking event
- An "SR flip-flop" is often called an SR latch in other texts.
- Level-Sensitive Latch
 - A latch that operates only when the clock is high or only when low
 - The "clocked SR flip-flop" is a level sensitive latch
- Flip-Flop
 - Reserved for circuits that record the input only during clocking events
 - The output of the flip-flop does not change during this clocking event
 - A "master-slave flip-flop" fits this definition
- 22

J-K FLIP FLOPS Allows both "set" and "reset" to be 1 When both J and K are 1, the output toggles If the clock is high, endless toggle occurs Master-Slave J-K flip-flops solve the endless toggle problem, but have the ones-catching problem. Edge-triggered flip-flops eliminate the ones-catching problem.

24

EDGE-TRIGGERED FLIP-FLOPS

- Records input during a low-to-high (positive edge) or a high-to-low (negative edge) clock transition
- Signal must be stable before setup time and continue to be stable for hold time

3.6 Sequential Circuits

- Another modification of the SR flip-flop is the D flip-flop, shown below with its characteristic table.
- You will notice that the output of the flip-flop remains the same during subsequent clock pulses. The output changes only when the value of D changes.

Explanation of function of negative edge-triggered D flip-flop:
X Y X NOR Y
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2. Gates 5 4 6 form an SR latch. When inputs to SR latch are both low, nothing happens the latched value remains.
3. We need the invariant that when the clock is low then the outputs of Gate 2 and Gate 3 are opposite values.
4. When the clock is low, changing the input does not change the outputs of Gates 2 4 3. Therefore, charging the input will not change the value latched by Gates 5 4 6. Rere's why:
a. If the output of date 2 is 1, this formes the output of date 1 to be 0 and also forces the output of date 3 to be nero. Therefore, changing the input ennot thenge the outputs of dates 2 is 0. Furthermore, both inputs to date 2 at 0. A submitted of the output of date 2 is 1. The output of dates 2 is 0, then by our invertiant, the output of the o

- Gate 3 must be 1. This forces the output of Gate 4 to be 0. Therefore, changing the input does not affect the output of Gate 4 and so cannot change anything else in the circuit. In particular, all of the inputs to Gate 3 remain set 0 and the output of Gate 3 stays at 1.
- 5. When the clock is high, the outputs of dates 2 4 J are always 0, regardless of the input. So, the value latched by Gates 5 4 6 cannot change when the clock is high.

5. When the clock is high, the outputs of Gates 1 & 4 are controlled by the input. However, we still know that the value of Gates 1 & 4 will be opposite In particular, the output of Gate 1 is equal to the input value and the output of Gate 4 is the opposite of the input value.

- Note, when the gate is high, input is "not" latched by dates 1 & 4. I.e., changing the input continues to alter dates 1 & 4 as long as the clock remains high. This shows that the flip-flop does "not" have the ones-catching problem.
 Before the setup time, the input must be stable. So, the outputs of Gate 1 and date 4 will also setule on some value.
- 9. When the clock goes from high to low, Gates 2 and 3 and like inverters for the outputs of Gates 1 and 4. The output of Gates 2 and 3 are thus guaranteed to be opposite (which maintains our invariant). These opposite values are then latched by Gates 5 and 6.

Master-Slave vs. Edge-Triggered

- Master-slave flip-flops record the input in the slave when the clock goes from high to low.
- Are master-slave flip-flops negative edgetriggered flip-flops?
 - Some textbooks say "yes" others say "no"
 - Master-slave J-K flip-flops have the ones-catching problem (momentary high signal at J when the clock is high is *caught* and recorded).
 - Master-slave D flip-flops do not have the onescatching problem.
- Is Pluto a planet??
- 30