
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3.6 Sequential Circuits

- Combinational logic circuits are perfect for situations when we require the immediate application of a Boolean function to a set of inputs.
- There are other times, however, when we need a circuit to change its value with consideration to its current state as well as its inputs.
- These circuits have to "remember" their current state.
- Sequential logic circuits provide this functionality for us.

3.6 Sequential Circuits

- As the name implies, sequential logic circuits require a means by which events can be sequenced
- State changes are controlled by clocks.
- A "clock" is a special circuit that sends electrical pulses through a circuit.
- Clocks produce electrical waveforms such as the one shown below.

${ }_{6}$
- 2012 Jone a Bater leanin uc
\qquad

3.6 Sequential Circuits

- State changes occur in sequential circuits only when the clock ticks.
- Circuits can change state on the rising edge, falling edge, or when the clock pulse reaches its highest voltage.

7
-2020. Iones B Batetet Learing uc

3.6 Sequential Circuits

- Circuits that change state on the rising edge, or falling edge of the clock pulse are called edgetriggered.
- Level-triggered circuits change state when the clock voltage reaches its highest or lowest level.

3.6 Sequential Circuits

- To retain their state values, sequential circuits rely on feedback.
- Feedback in digital circuits occurs when an output is looped back to the input.
- A simple example of this concept is shown below. - If Q is 0 it will always be 0 , if it is 1 , it will always be 1 . Why?

9

- 2 R12 Jones 8 Bater Leming uc

3.6 Sequential Circuits

- You can see how feedback works by examining the most basic sequential logic components, the SR flip-flop.
- The "SR" stands for set/reset.
- The internals of an SR flip-flop are shown below, along with its block diagram.

3.6 Sequential Circuits

- The behavior of an SR flip-flop is described by a characteristic table.
- $Q(t)$ means the value of the output at time t. $Q(t+1)$ is the value of Q after the next clock pulse.

3.6 Sequential Circuits

- The SR flip-flop actually has three inputs: S, R, and its current output, Q
- Thus, we can construct a truth table for this circuit, as shown at the right.
- Notice the two undefined values. When both S and R are 1 , the SR flipflop is unstable.

s		resent State $Q(t)$	Next State $Q(t+1)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	undefined
1	1	1	undefined

\qquad

3.6 Sequential Circuits

- If we can be sure that the inputs to an SR flip-flop will never both be 1, we will never have an unstable circuit. This may not always be the case.
- The SR flip-flop can be modified to provide a stable state when both inputs are 1.
- This modified flip-flop is called a JK flip-flop, shown at the right.

19

3.6 Sequential Circuits

- At the right, we see how an SR flip-flop can be modified to create a JK flip-flop
- The characteristic table indicates that the flip-flop is stable for all inputs.

J	K	$Q(t+1)$
0	0	$Q(t)$ (no change)
0	1	0 (reset to 0)
1	0	1 (set (se 1$)$
1	1	$Q^{\prime}(t)$

$Q(t+1)$
0 (reset to ${ }^{0}$
1 (set to 1)
1
$Q^{\prime}(t)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

J-K FLIP FLOPS

Allows both "set" and "reset" to be 1

- When both J and K are 1, the output toggles
- If the clock is high, endless toggle occurs
- Master-Slave J-K flip-flops solve the endless toggle problem, but have the ones-catching problem.
- Edge-triggered flip-flops eliminate the onescatching problem
\qquad

EDGE-TRIGGERED FLIP-FLOPS

- Records input during a low-to-high (positive edge) or a high-to-low (negative edge) clock transition
- Signal must be stable before setup time and continue to be stable for hold time

3.6 Sequential Circuits

- Another modification of the SR flip-flop is the D flip-flop, shown below with its characteristic table
- You will notice that the output of the flip-flop remains the same during subsequent clock pulses. The output changes only when the value of D changes.

3.6 Sequential Circuits

- The D flip-flop is the fundamental circuit of computer memory.
- D flip-flops are usually illustrated using the block diagram shown below.
- The characteristic table for the D flip-flop is shown at the right.

${ }_{27}$

\qquad

Master-Slave vs. Edge-Triggered

- Master-slave flip-flops record the input in the slave when the clock goes from high to low.
- Are master-slave flip-flops negative edgetriggered flip-flops?
- Some textbooks say "yes" others say "no"
- Master-slave J-K flip-flops have the ones-catching
problem (momentary high signal at J when the clock is high is caught and recorded).
- Master-slave D flip-flops do not have the onescatching problem.
- Is Pluto a planet??
${ }_{30}$
\qquad

