

Semiconductors, Transistors, and Gates

- How do we make gates???

Semiconductors, Transistors, and Gates
• How do we make gates???

\sim				

-Don't show this to your electrician, or wire your house this way. This circuit definitely when the light is turned off. Can you figure how?
 ©2007 M MuctoccanandV. Having

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \square \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

An Inverter using MOSFET

- CMOS = complementary metal oxide semiconductor
- P-type transistor conducts when gate is low
- N-type transistor conducts when gate is high

ano
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad , \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CMOS Logic vs Bipolar Logic

- MOSFET transistors are easier to miniaturize
- CMOS logic has lower current drain
- CMOS logic is easier to manufacture
${ }_{30}$
\qquad

Circuits for Addition

Combinational logic circuits give us many useful devices
One of the simplest is the half adder, which finds the sum of two bits.
We can gain some insight as to the construction of a half adder by looking at its truth table, shown at the right.
32

Inputs		
\mathbf{y}	Outputs	
\mathbf{X}	\mathbf{Y}	Sum
0	0	0
$0 \times r y$		
0	1	1
1	0	0
1	1	0
		0

Half Adder

- Inputs: A and B
- Outputs: $S=$ lower bit of $A+B, c_{\text {out }}=$ carry bit

\section*{| A | B | S | $C_{\text {out }}$ |
| :--- | :--- | :--- | :--- |
| 0 | | | |
 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 |
 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
 $\begin{array}{llll}1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}$}

1	1	0	1

- Using Sum-of-Products: $S=\bar{A} B+A \bar{B}, \quad c_{\text {out }}=A B$
- Alternatively, we could use XOR: $S=A \oplus B$.
....
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

adder into to a full adder by including gates for processing the carry bit.
- The truth table for a full adder is shown at the right.

Inputs			Outputs	
x	Y	Carry	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

${ }_{35}$

\qquad

3.5 Combinational Circuits

- Just as we combined half adders to make a full adder, full adders can connected in series.
- The carry bit "ripples" from one adder to the next; hence, this configuration is called a ripple-carry adder.

Constructing Larger Adders

A 16-bit adder can be made up of a cascade of four 4-bit ripplecarry adders.

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3.5 Combinational Circuits

- Decoders are another important type of combinational circuit.
- Among other things, they are useful in selecting a memory location according a binary value placed on the address lines of a memory bus.
- Address decoders with n inputs can select any of 2^{n} locations.
This is a
block
block
diagram for
a decoder.

${ }_{45}$
\qquad

3.5 Combinational Circuits

46

3.5 Combinational Circuits

- A multiplexer does just the opposite of a decoder.
- It selects a single output fromion $\begin{aligned} & \mathrm{I}_{0} \longrightarrow \\ & \text { several inputs. }\end{aligned} \mathrm{I}_{\mathrm{I}_{1}} \longrightarrow \begin{gathered}\text { Multipleeer (MUX) }\end{gathered} \xrightarrow{\text { output }}$

The particular input chosen for output is determined by the value of the multiplexer's control lines.
To be able to select among n inputs, $\log _{2} n$ control lines are needed.

47

3.5 Combinational Circuits

- This is what a 4-to-1 multiplexer looks like on the inside.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

