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Digital Logic I

CMSC 313

Sections 01, 02

Introduction to Digital Logic

2 3

Chapter 3 Objectives

• Understand the relationship between Boolean 

logic and digital computer circuits.

• Learn how to design simple logic circuits.

• Understand how digital circuits work together to 

form complex computer systems.
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Some Definitions

• Combinational logic: a digital logic circuit in which logical decisions 

are made based only on combinations of the inputs. e.g. an adder.

• Sequential logic: a circuit in which decisions are made based on 

combinations of the current inputs as well as the past history of 

inputs. e.g. a memory unit.

• Finite state machine: a circuit which has an internal state, and 

whose outputs are functions of both current inputs and its internal 

state. e.g. a vending machine controller.
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The Combinational Logic Unit
• Translates a set of inputs into a set of outputs according to one or 

more mapping functions. 

• Inputs and outputs for a CLU normally have two distinct (binary) 

values: high and low, 1 and 0, 0 and 1, or 5 V. and 0 V. for example.

• The outputs of a CLU are strictly functions of the inputs, and the 

outputs are updated immediately after the inputs change. A set of 

inputs i0 – in are presented to the CLU, which produces a set of 

outputs according to mapping functions f0 – fm.

3-6 Chapter 3 - Arithmetic

Computer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

Ripple Carry Adder

• Two binary numbers A and B are added from right to left, creating a 

sum and a carry at the outputs of each full adder for each bit 

position.
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Classical Model of a Finite State 
Machine

•  An FSM is 

composed of a 

combinational logic 

unit and delay 

elements (called flip-

flops) in a feedback 

path, which 

maintains state 

information.
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Vending Machine State Transition
Diagram
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3.2 Boolean Algebra

• Boolean algebra is a mathematical system for 

the manipulation of variables that can have 

one of two values.

– In formal logic, these values are “true” and “false.”

– In digital systems, these values are “on” and “off,” 

1 and 0, or “high” and “low.”

• Boolean expressions are created by 

performing operations on Boolean variables.

– Common Boolean operators include AND, OR, 

and NOT.

11

• A Boolean operator can be 

completely described using a 

truth table.

• The truth table for the Boolean 

operators AND and OR are 

shown at the right.

• The AND operator is also known 

as a Boolean product.  The OR 

operator is the Boolean sum.

3.2 Boolean Algebra
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• The truth table for the 

Boolean NOT operator is 

shown at the right.

• The NOT operation is most 

often designated by a 
prime mark ( X’). It is 

sometimes indicated by an 

overbar (  X) or an “elbow” 
(X).

3.2 Boolean Algebra
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• A Boolean function has:

• At least one Boolean variable, 

• At least one Boolean operator, and 

• At least one input from the set {0,1}.

• It produces an output that is also a member of 

the set {0,1}.

Now you know why the binary numbering 

system is so handy in digital systems.

3.2 Boolean Algebra

14

• The truth table for the 

Boolean function: 

is shown at the right.

• To make evaluation of the 

Boolean function easier, 

the truth table contains 

extra (shaded) columns to 

hold evaluations of 

subparts of the function.

3.2 Boolean Algebra
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• As with common 

arithmetic, Boolean 

operations have rules of 

precedence.

• The NOT operator has 

highest priority, followed 

by AND and then OR.

• This is how we chose the 

(shaded) function 

subparts in our table. 

3.2 Boolean Algebra
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• Digital computers contain circuits that implement 

Boolean functions.

• The simpler that we can make a Boolean function, 

the smaller the circuit that will result.

– Simpler circuits are cheaper to build, consume less 

power, and run faster than complex circuits.

• With this in mind, we always want to reduce our 

Boolean functions to their simplest form.

• There are a number of Boolean identities that help 

us to do this.

3.2 Boolean Algebra
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• Most Boolean identities have an AND (product) 

form as well as an OR (sum) form.  We give our 

identities using both forms. Our first group is rather 

intuitive:

3.2 Boolean Algebra
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• Our second group of Boolean identities should be 

familiar to you from your study of algebra:

3.2 Boolean Algebra
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• Our last group of Boolean identities are perhaps the 

most useful.

• If you have studied set theory or formal logic, these 

laws are also familiar to you.

3.2 Boolean Algebra
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• We can use Boolean identities to simplify:

3.2 Boolean Algebra

F(x,y,z) = xy + x′z + yz

21

• Sometimes it is more economical to build a 

circuit using the complement of a function (and 

complementing its result) than it is to implement 

the function directly.

• DeMorgan’s law provides an easy way of finding 

the complement of a Boolean function.

• Recall DeMorgan’s law states:

3.2 Boolean Algebra

(xy)’ = x’+ y’ and (x + y)’= x’y’
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• DeMorgan’s law can be extended to any number of 

variables.

• Replace each variable by its complement and 

change all ANDs to ORs and all ORs to ANDs.

• Thus, we find the the complement of:

is:

3.2 Boolean Algebra
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• Through our exercises in simplifying Boolean 

expressions, we see that there are numerous 

ways of stating the same Boolean expression.

– These “synonymous” forms are logically equivalent.

– Logically equivalent expressions have identical truth 

tables.

• In order to eliminate as much confusion as 

possible, designers express Boolean functions in 

standardized or canonical form.

3.2 Boolean Algebra
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• There are two canonical forms for Boolean 

expressions: sum-of-products and product-of-sums.

– Recall the Boolean product is the AND operation and the 

Boolean sum is the OR operation.

• In the sum-of-products form, ANDed variables are 

ORed together.

– For example:

• In the product-of-sums form, ORed variables are 

ANDed together:

– For example:

3.2 Boolean Algebra
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• It is easy to convert a function 

to sum-of-products form using 

its truth table.

• We are interested in the values 

of the variables that make the 

function true (=1).

• Using the truth table, we list the 

values of the variables that 

result in a true function value.

• Each group of variables is then 

ORed together.

3.2 Boolean Algebra
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• The sum-of-products form 

for our function is:

We note that this function is not 

in simplest terms. Our aim is 

only to rewrite our function in 

canonical sum-of-products form. 

3.2 Boolean Algebra
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• We have looked at Boolean functions in abstract 

terms.

• In this section, we see that Boolean functions are 

implemented in digital computer circuits called gates.

• A gate is an electronic device that produces a result 

based on two or more input values.

– In reality, gates consist of one to six transistors, but digital 

designers think of them as a single unit.

– Integrated circuits contain collections of gates suited to a 

particular purpose.

3.3 Logic Gates
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• The three simplest gates are the AND, OR, and NOT 

gates.

• They correspond directly to their respective Boolean 

operations, as you can see by their truth tables.

3.3 Logic Gates
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• Another very useful gate is the exclusive OR 

(XOR) gate.  

• The output of the XOR operation is true only when 

the values of the inputs differ.

Note the special symbol 

for the XOR operation.

3.3 Logic Gates
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• NAND and 

NOR are two 

very 

important 

gates.  Their 

symbols and 

truth tables 

are shown at 

the right.

3.3 Logic Gates
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• NAND and NOR 

are known as 

universal gates

because they are 

inexpensive to 

manufacture and 

any Boolean 

function can be 

constructed using 

only NAND or only 

NOR gates.

3.3 Logic Gates

32

• Gates can have multiple inputs and more than 

one output.

– A second output can be provided for the 

complement of the operation.

– We’ll see more of this later.

3.3 Logic Gates

33

• The main thing to remember is that combinations 

of gates implement Boolean functions.

• The circuit below implements the Boolean 

function F(x,y,z) = x + y’z:

We simplify our Boolean expressions so 

that we can create simpler circuits.

3.4 Digital Components
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The Sum-of-Products (SOP) Form

• Transform the function into a two-level AND-OR equation

• Implement the function with an arrangement of logic gates from the 
set {AND, OR, NOT}

• M is true when A=0, B=1, and C=1, or when A=1, B=0, and C=1, 
and so on for the remaining cases.

• Represent logic equations by using the sum-of-products (SOP) 
form

Truth Table for The 

Majority Function
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The SOP Form of the Majority Gate

• The SOP form for the 3-input majority gate is:

• M = ABC + ABC + ABC + ABC   = m3 + m5 +m6 +m7  =   (3, 5, 6, 7)

• Each of the 2n terms are called minterms, running from 0 to 2n - 1

• Note the relationship between minterm number and boolean value.

• Discuss: common-sense interpretation of equation.
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A 2-Level AND-OR Circuit Implements 
the Majority Function

The encircled “T” intersections are electrically common (see next slide).
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Notation Used at Circuit Intersections

38 39
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A 2-Level OR-AND Circuit Implements 
the Majority Function

41 42
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NAND Gates Can Implement AND and 
OR Gates

Inverted inputs to a NAND gate are implemented with NAND gates.
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DeMorgan’s Theorem

Discuss: Applying DeMorgan’s theorem by “pushing the bubbles,” 

and “bubble tricks.”


