Digital Logic |

CMSC 313
Sections 01, 02

Introduction to Digital Logic

11/10/2015

Chapter 3 Objectives

Understand the relationship between Boolean
logic and digital computer circuits.

Learn how to design simple logic circuits.

Understand how digital circuits work together to
form complex computer systems.




Al

‘Computer Architecture and Organization by M. Murdocca and V. Heuring

Appendix A - Digital Logic

Some Definitions

Combinational logic: a digital logic circuit in which logical decisions
are made based only on combinations of the inputs. e.g. an adder.
Sequential logic: a circuit in which decisions are made based on
combinations of the current inputs as well as the past history of
inputs. e.g. a memory unit.

Finite state machine: a circuit which has an internal state, and
whose outputs are functions of both current inputs and its internal
state. e.g. a vending machine controller.

©2007 M. Murdocea and V. Heuring

A5 Appendix A - Digital Logic

The Combinational Logic Unit

Translates a set of inputs into a set of outputs according to one or
more mapping functions.

Inputs and outputs for a CLU normally have two distinct (binary)
values: high and low, 1 and 0, 0 and 1, or 5 V. and 0 V. for example.
The outputs of a CLU are strictly functions of the inputs, and the
outputs are updated immediately after the inputs change. A set of
inputs iy — i, are presented to the CLU, which produces a set of
outputs according to mapping functions f, — f,,

W —>] —> fi )

iy — Combinational [— Jfi(i1, i3 iy
logic unit

i, —» —» f(io. i)

Computer Architecture and Organization by M. Murdocca and V. Heuring ©2007 M. Murdocea and V. Heuring

36 Chapter 3 - Arithmetic

Ripple Carry Adder

« Two binary numbers A and B are added from right to left, creating a
sum and a carry at the outputs of each full adder for each bit

position.
by ay by ay by a by ay
T ) ) cy
WA 3y ] e ] e
Full Full Full Full
adder adder adder adder

o]

Computer Architecture and Organization by M. Murdocca and V. Heuring

83 85> 5 S0

©2007 M. Murdocea and V. Heuring

11/10/2015




AT

Appendix A - Digital Logic

Classical Model of a Finite State
Machine

* AnFSMis
composed of a
combinational logic
unit and delay
elements (called flip-
flops) in a feedback
path, which
maintains state
information.

Inputs

Synchronization
signal

iy =

fy

—

io
: Outputs
Combinational [~ Ju

logic unit

— Siate bits

T

Delay elements (one per state bit)

‘Computer Architecture and Organization by M. Murdocca and V. Heuring

©2007 M. Murdocea and V. Heuring

Computer Architecture and Organization by M. Murdocca and V. Heuring

Appendix A - Digital Logic

Vending Machine State Transition
Diagram

1/0 = Dispense/Do not

dispense merchandise
A dime is
inserted

1/0 = Return/Do not return
anickel in change

A~ 1/0= Return/Do not
D110 return a dime in change

Q110

N/100

Nickel
Dime

Q11 D
Q = Quarter

D/100

©2007 M. Murdocea and V. Heuring

2-bit CPU, version 8

ALU Instructions:
o A

0L = AMNDE
10-A008
11 = NoT

A st

T
pe o Py fg Q
AUA MUE mm Res MUK dest
MUX RES MUX
DO=ReqD 01=Regl 00=Reg0 01=Regl
10mimm Hexe  10simm Ll=ALU

11/10/2015




11/10/2015

3.2 Boolean Algebra

* Boolean algebra is a mathematical system for
the manipulation of variables that can have
one of two values.

— In formal logic, these values are “true” and “false.”
— In digital systems, these values are “on” and “off,”
1 and 0, or “high” and “low.”

» Boolean expressions are created by
performing operations on Boolean variables.
— Common Boolean operators include AND, OR,
and NOT.

3.2 Boolean Algebra

» A Boolean operator can be
completely described using a
truth table.

The truth table for the Boolean
operators AND and OR are
shown at the right.

» The AND operator is also known
as a Boolean product. The OR
operator is the Boolean sum.

3.2 Boolean Algebra

* The truth table for the
Boolean NOT operator is
shown at the right.

* The NOT operation is most X

often designated by a
prime mark ( X”). Itis
sometimes indicated by an
overbar ( X) or an “elbow”
(x).

=
o




3.2 Boolean Algebra

+ A Boolean function has:
- At least one Boolean variable,
« At least one Boolean operator, and
- At least one input from the set {0,1}.

* It produces an output that is also a member of
the set {0,1}.

Now you know why the binary numbering
system is so handy in digital systems.

3.2 Boolean Algebra

The truth table for the
Boolean function:

F(x,y,z) = xz2'+y

is shown at the right.

To make evaluation of the
Boolean function easier,
the truth table contains
extra (shaded) columns to
hold evaluations of
subparts of the function.

11/10/2015

F(x,y,z) = xz'+y
X y z z'xz‘|xz'+y|
0O 0 O 1 0 0
0 0 1 0 O 0
0O 1 0 1 0 1
0o 1 1 0 O 1
1 0 O 1 1 1
1 0 1 0 O 0
1 1 0 1 1 1
1 1 1 0 O 1

3.2 Boolean Algebra

« As with common Flz,y,2)

= xz'+y

arithmetic, Boolean 2

»
[

z' xz'

xz'+y

operations have rules of
precedence.

* The NOT operator has
highest priority, followed
by AND and then OR.

* This is how we chose the
(shaded) function
subparts in our table.

H B KRR OOOOo
H H O O KR K O O
H OKr OROHR O

O K OR OFRFR O R
Or ORr OO O O

HKErORKRERROO

© 2012 Jones &




11/10/2015

3.2 Boolean Algebra

Digital computers contain circuits that implement

Boolean functions.

The simpler that we can make a Boolean function,

the smaller the circuit that will result.

— Simpler circuits are cheaper to build, consume less
power, and run faster than complex circuits.

With this in mind, we always want to reduce our

Boolean functions to their simplest form.

There are a number of Boolean identities that help

us to do this.

3.2 Boolean Algebra

* Most Boolean identities have an AND (product)
form as well as an OR (sum) form. We give our
identities using both forms. Our first group is rather
intuitive:

Identity AND OR
Name Form Form
Identity Law 1x=x 0+x=x
Null Law 0x=0 l+x=1
Idempotent Law [ xx =x X+x=
Inverse Law xx'= 0 x+x'=1

3.2 Boolean Algebra

» Our second group of Boolean identities should be
familiar to you from your study of algebra:

Identity AND OR
Name Form Form
Commutative Law Xy = ¥X X+y = y+x
Associative Law (xy)z =x(yz) (x+y)+z=x + (y+z)
Distributive Law x+yz = (x+y) (x+2) | x(y+2) = xy+xz

18 © 2012 Jones &




3.2 Boolean Algebra

» Our last group of Boolean identities are perhaps the
most useful.
« If you have studied set theory or formal logic, these
laws are also familiar to you.

Identity
Name

AND
Form

OR
Form

Absorption Law

x(x+y)=x

X+ Xy=2Xx

DeMorgan's Law (xy) =x'+y' (x+y)'= x'y'
Double "
Complement Law (x) =x

3.2 Boolean Algebra

« We can use Boolean identities to simplify:

F(x,y,z) = xy + x'z + yz

Flxyz) =xy+ x'z+ yz

=xy + x'z + yz(1)
=xy + x'z + yzlx + x)

=uxy + x'z + (yo)x + (yz)x'
=Xy + x'z + x(yz) + x'(zy)
=xy +x'z + (y)z + (Fo)y
=uxy + (xy)z + x'z + (x'z)y

=uxy(l +2z) +x'z(1 +y)
= xy(1) +x'z(1)
=xy+x'z

(Identity)

(Inverse)
(Distributive)
(Commutative)
(Associative twice)
(Commutative)
(Distributive)
(Null)

(Identity)

11/10/2015

3.2 Boolean Algebra

Sometimes it is more economical to build a
circuit using the complement of a function (and
complementing its result) than it is to implement
the function directly.

DeMorgan’s law provides an easy way of finding
the complement of a Boolean function.

Recall DeMorgan’s law states:

(xy)" =x"+y’ and (x+y)'=x"y’




11/10/2015

F'(x,y,2)

3.2 Boolean Algebra

DeMorgan’s law can be extended to any number of
variables.

Replace each variable by its complement and
change all ANDs to ORs and all ORs to ANDs.

Thus, we find the the complement of:
F(x,y,2z) = (xy)+(x'y)+ (xz')
is:

((xy)+(x'y)+ (x2')) !
(xy) ' (x'y) ' (x2') "
(x'+y'")(x+y') (x'+ 2)

3.2 Boolean Algebra

Through our exercises in simplifying Boolean

expressions, we see that there are numerous

ways of stating the same Boolean expression.

— These “synonymous” forms are logically equivalent.

— Logically equivalent expressions have identical truth
tables.

In order to eliminate as much confusion as

possible, designers express Boolean functions in

standardized or canonical form.

3.2 Boolean Algebra

« There are two canonical forms for Boolean
expressions: sum-of-products and product-of-sums.
— Recall the Boolean product is the AND operation and the
Boolean sum is the OR operation.
* In the sum-of-products form, ANDed variables are
ORed together.
— Forexample: F(x,vy,z)= xy + Xz + yz
« In the product-of-sums form, ORed variables are
ANDed together:
- Forexample: F (x,y,z)=(x+y) (x+z) (y+z)




11/10/2015

3.2 Boolean Algebra 3.2 Boolean Algebra 3.3 Logic Gates
* ltis easy to convert a function . + The sum-of-products form + We have looked at Boolean functions in abstract
to sum-of-products form using T (*'¥s2) = xz'+y for our function is: Ellxiiyliz)Esixzlisty terms.
its truth table. = v 2| mew x y z| xz+y « In this section, we see that Boolean functions are
+ We are interested in the values F(x,¥,2) = (:‘( ¥z z)'+)(f(fzz)' N 5 implemented in digital computer circuits called gates.
of the variables that make the © 00 © ?{xyz ) ¥ o o 1 o + Agate is an electronic device that produces a result
function true (=1). 0 o0 1 © 9 1 @ 1 based on two or more input values.
+ Using the truth table, we list the g i g i 0 1 1 1 — In reality, gates consist of one to six transistors, but digital
values of the variables that 10 0 o bt this function i 100 5 designers think of them as a single unit.
I’eSU|’[ in atrue function Value. We note that this function is not 1 0 1 0 _ . . . . .
" : 1 0 1 o ) SRSt {mivs, Iy i 11 o 1 Integrated circuits contain collections of gates suited to a
+ Each group of variables is then 11 0 1 only to rewrite our function in 11 1 1 particular purpose.
ORed together. 101 1 1 canonical sum-of-products form.
25 26 e 27 © 2012 Jones &




3.3 Logic Gates
» The three simplest gates are the AND, OR, and NOT

gates.
Y Y

X AND ¥ X OR Y NOT X
X Y XY X Y X+Y % X’
00 o 00 o
01 o 01 1 O 2
10 o0 10 1 3@
11 1 111

» They correspond directly to their respective Boolean
operations, as you can see by their truth tables.

3.3 Logic Gates

» Another very useful gate is the exclusive OR
(XOR) gate.

» The output of the XOR operation is true only when
the values of the inputs differ.

X XOR ¥
X
xey

X Y XeY
0 o 0 y
0 1 1
1 0 1 Note the special symbol &
1 1 0 for the XOR operation.

11/10/2015

* NAND and
NOR are two
very
important
gates. Their
symbols and
truth tables
are shown at
the right.

3.3 Logic Gates

X NAND ¥
X ¥ X NAND ¥
o 0 1
o 1 al
1 0 1
1 1 0
X NOR ¥
X Y XNORY
0o o0 1
0 1 0
1 0 ]
1 1 o

* (xy)’

"

+y =)

= x
:

e+ y)

:

X'y'= (4 yy

:

10



11/10/2015

3.3 Logic Gates
+ NAND and NOR AND

are known as X (xyy
universal gates v xy)" =xy
because they are

inexpensive to

manufacture and NOT  x .
any Boolean OR

function can be x
constructed using
only NAND or only

NOR gates. y—|:

3.3 Logic Gates

» Gates can have multiple inputs and more than
one output.
— A second output can be provided for the
complement of the operation.

— We’ll see more of this later.

X X+y+z X — xy'z
y y —
z 7 —

X Q

y— Q'

3.4 Digital Components
* The main thing to remember is that combinations
of gates implement Boolean functions.
+ The circuit below implements the Boolean
function F(x,y,z) = x+y’z:

x

X+yz

We simplify our Boolean expressions so
that we can create simpler circuits.

33 © 2012 Jones

11



A34 Appendix A - Digital Logic
The Sum-of-Products (SOP) Form
Mintaro| A B O F
Truth Table for The M: LN Y
Majority Function M
ale 11| Gaxm ok
LY L o
Gl1 a1 1
a1 10 k] Absbneatips fotha kit or
e 1] g dvaning en wnelher

Transform the function into a two-level AND-OR equation
Implement the function with an arrangement of logic gates from the
set {AND, OR, NOT}

M is true when A=0, B=1, and C=1, or when A=1, B=0, and C=1,
and so on for the remaining cases.

Represent logic equations by using the sum-of-products (SOP)
form

‘Computer Architecture and Organization by M. Murdocca and V. Heuring ©2007 M. Murdocea and V. Heuring

A35 Appendix A - Digital Logic

The SOP Form of the Majority Gate

« The SOP form for the 3-input majority gate is:

« M=ABC+ABC +ABC +ABC =m3+m5+m6+m7 = X (3,5,6,7)

« Each of the 2" terms are called minterms, running from0to 2" - 1

« Note the relationship between minterm number and boolean value.
« Discuss: common-sense interpretation of equation.

Computer Architecture and Organization by M. Murdocca and V. Heuring ©2007 M. Murdocea and V. Heuring

11/10/2015

A36 Appendix A - Digital Logic

A 2-Level AND-OR Circuit Implements
the Majority Function

v|Y

The encircled “T” intersections are electrically common (see next slide).

Computer Architecture and Organization by M. Murdocca and V. Heuring ©2007 M. Murdocea and V. Heuring

12



A37 Appendix A - Digital Logic

Notation Used at Circuit Intersections

Connection No connection

——

Connection No connection

‘Computer Architecture and Organization by M. Murdocca and V. Heuring ©2007 M. Murdocea and V. Heuring

Sum of Products (a.k.a. disjunctive normal form)

11/10/2015

* OR (i.e., sum) together rows with output 1

+ AND (i.e., product) of variables represents each row
e.g., inrow 3 when 2 = 0 AND 25 = 1 AND 3 = 1
or when &1 -0 -xq = 1

+ MAJ3(xy,2 T+ T reTE 1 Texs = »om(3,5,6,7)
5 oz oz | MAR
olo o o o
1o o 1] 0
2/0 1 o0 0
300 1 1] 1
4 1 0 o o
51 0 1 1
61 1 0 1
711 1)1
LLLT 1

Product of Sums (a.k.a. conjunctive normal form)

* AND (i.e., product) of rows with output 0

® OR (i.e., sum) of variables represents negation of each row

e.g., NOT in row 2 when x;

or when ry + 'z

o MAJ3(2y, 72, 75)
[T M{0,1,2,4)

bag=1

(z1+22+

wenawne o

mme—mocooo

1 OR x5 = 0 OR x5

a3)lT
r2 s
o o
o1
10
1 1
o0
01
10
1 1

tay+T5) (0 + T2

MAL

mh e oe o

b (T

13



A40

Appendix A - Digital Logic

A 2-Level OR-AND Circuit Implements

A

o

ks

o

tE\e Majority Function

| NAEREC
17

T N\4+8+T
— 7

=

\ N
——"___“4+3:¢c

‘Computer Architecture and Organization by M. Murdocca and V. Heuring

\ TN\diB+C

©2007 M. Murdocea and V. Heuring

Equivalences

11/10/2015

# Every Boolean function can be written as a truth table

» Every truth table can be written as a Boolean formula (SOP or POS)
# Every Boolean formula can be converted into a combinational circuit
« Every combinational circuit is a Boolean function

# Later you might learn other equivalencies:
finite automata = regular expressions
computable functions = programs

Universality

# Every Boolean function can be written as a Boolean formula using AND,
OR and NOT operators

# Every Boolean function can be implemented as a combinational circuit
using AND, OR and NOT gates

® Since AND, OR and NOT gates can be constructed from NAND gates,

NAND gates are universal.

nann a

14



A43 Appendix A - Digital Logic

NAND Gates Can Implement AND and
OR Gates

= o=
S
+
=
Il
S
+
=

Inverted inputs to a NAND gate are implemented with NAND gates.

‘Computer Architecture and Organization by M. Murdocca and V. Heuring ©2007 M. Murdocea and V. Heuring

a4 Appendix A - Digital Logic

DeMorgan’s Theorem

AB | 4p=4+B | a4+8=4B
00 I 1 I I
01 1 1 0 0
10 1 1 0 0
11 0 0 0 0

DeMorgan’s theorem: 4+ g = 4+ B = ﬁ

A4 —_ A =

Discuss: Applying DeMorgan’s theorem by “pushing the bubbles,”
and “bubble tricks.”

Yl

Computer Architecture and Organization by M. Murdocca and V. Heuring ©2007 M. Murdocea and V. Heuring

11/10/2015

15



