

- Boolean algebra is a mathematical system for the manipulation of variables that can have one of two values.
 - In formal logic, these values are "true" and "false."
 - In digital systems, these values are "on" and "off,"
 1 and 0, or "high" and "low."
- Boolean expressions are created by performing operations on Boolean variables.
 Common Boolean operators include AND, OR, and NOT.

10

© 2012 Jones & Bartlett Learning, LLC www.jblearning.com

A Boolean function has: A t least one Boolean variable, At least one Boolean operator, and At least one input from the set {0,1}. It produces an output that is also a member of the set {0,1}. Mow you know why the binary numbering system is so handy in digital systems.

The truth table for the	F	(x	y,z	:) =	= x 2	:'+ у
Boolean function: $\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{x}\mathbf{z}' + \mathbf{y}$	x	У	z	z'	xz'	xz'+ y
r(x, y, z) = xz + y	0	0	0	1	0	0
To make evoluation of the	0	0	1	0	0	0
Boolean function easier,	0	1	0	1	0	1
the truth table contains	0	1	1	0	0	1
extra (shaded) columns to	1	0	0	1	1	1
subparts of the function.	1	0	1	0	0	0
	1	1	0	1	1	1
	1	1	1	0	0	1

As with common	F(x, y, z) = xz' + y					
arithmetic, Boolean	x	У	z	z '	xz'	xz'+
precedence.	0	0	0	1	0	0
	0	0	1	0	0	0
Ine NOT operator has bigbost priority, followed	0	1	0	1	0	1
highest priority, followed	0	1	1	0	0	1
by AND and then OK.	1	0	0	1	1	1
 This is how we chose the 	1	0	1	0	0	0
(shaded) function	1	1	0	1	1	1
subparts in our table.	1	1	1	0	0	1

- Digital computers contain circuits that implement Boolean functions.
- The simpler that we can make a Boolean function, the smaller the circuit that will result.
 - Simpler circuits are cheaper to build, consume less power, and run faster than complex circuits.
- With this in mind, we always want to reduce our Boolean functions to their simplest form.

16

• There are a number of Boolean identities that help us to do this.

© 2012 Jones & Bartlett Learning, LLC www.jblearning.com

3.2 Boolean Algebra

 Most Boolean identities have an AND (product) form as well as an OR (sum) form. We give our identities using both forms. Our first group is rather intuitive:

3.2 Boolean Algebra

• Our second group of Boolean identities should be familiar to you from your study of algebra:

ity AND OR he Form Form
$ \begin{array}{c c} \mbox{tive Law} & \mbox{xy = yx} & \mbox{x+y = y+x} \\ \mbox{tive Law} & \mbox{(xy) z = x(yz)} & \mbox{(x+y) + z = x + (y+z)} \\ \mbox{vulve Law} & \mbox{x+yz = (x+y) (x+z)} & \mbox{x(y+z) = xy+xz} \end{array} $

- Our last group of Boolean identities are perhaps the most useful.
- If you have studied set theory or formal logic, these laws are also familiar to you.

Name	Form	Form		
Absorption Law	x(x+y) = x	x + xy = x		
DeMorgan's Law	(xy) = x' + y'	$(\mathbf{x} + \mathbf{y})' = \mathbf{x}' \mathbf{y}'$		
Double Complement Law	$(\mathbf{x})'' = \mathbf{x}$			

- DeMorgan's law can be extended to any number of variables.
- Replace each variable by its complement and change all ANDs to ORs and all ORs to ANDs.
- Thus, we find the the complement of:

F(x, y, z) = (xy) + (x'y) + (xz')is: F'(x, y, z) = ((xy) + (x'y) + (xz'))'= (xy)'(x'y)'(xz')'= (x' + y')(x + y')(x' + z)

© 2007 M. Mt

ca and V. Heuring

Equivalences

....

- Every Boolean function can be written as a truth table
- Every truth table can be written as a Boolean formula (SOP or POS)
- Every Boolean formula can be converted into a combinational circuit
- Every combinational circuit is a Boolean function
- Later you might learn other equivalencies: finite automata \equiv regular expressions computable functions \equiv programs

Universality

OR and NOT operators.

 \bullet Every Boolean function can be implemented as a combinational circuit using AND, OR and NOT gates.

• Every Boolean function can be written as a Boolean formula using AND,

• Since AND, OR and NOT gates can be constructed from NAND gates, NAND gates are universal.

....

3

