

Chapter 3 Objectives

Understand the relationship between Boolean logic and digital computer circuits.

- Learn how to design simple logic circuits.
- Understand how digital circuits work together to form complex computer systems

3
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3.2 Boolean Algebra

- Boolean algebra is a mathematical system for the manipulation of variables that can have one of two values.
- In formal logic, these values are "true" and "false."
- In digital systems, these values are "on" and "off," 1 and 0 , or "high" and "low."
- Boolean expressions are created by performing operations on Boolean variables. - Common Boolean operators include AND, OR, and NOT.

3.2 Boolean Algebra

- A Boolean operator can be completely described using a truth table.
- The truth table for the Boolean operators AND and OR are shown at the right.
- The AND operator is also known as a Boolean product. The OR operator is the Boolean sum.
${ }^{11}$

3.2 Boolean Algebra

- The truth table for the Boolean NOT operator is shown at the right
- The NOT operation is most often designated by a prime mark (\mathbf{x}^{\prime}). It is sometimes indicated by an overbar ($\overline{\mathbf{x}}$) or an "elbow"

NOT X	
X	X^{\prime}
0	1
1	0

	X Y	XY
		0
		0
		0
		1
X OR Y		
	Y	X+Y
	0	0
0	1	1
	0	1
	1	1

${ }^{12}$

- 2 R12 Jones 8 Bater Leming uc
\qquad

3.2 Boolean Algebra

- A Boolean function has:
- At least one Boolean variable,
- At least one Boolean operator, and
- At least one input from the set $\{0,1\}$.
- It produces an output that is also a member of the set $\{0,1\}$.
Now you know why the binary numbering
system is so handy in digital systems.

3.2 Boolean Algebra

- As with common arithmetic, Boolean operations have rules of precedence.
- The NOT operator has highest priority, followed by AND and then OR.
- This is how we chose the (shaded) function subparts in our table.

$F(x, y, z)=x z^{\prime}+y$
$\left.\begin{array}{\|\|ccc\|\|c\|\|c\|}\hline \hline x & y & z & z^{\prime} x z^{\prime} & x z^{\prime}+y \\ \hline 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0\end{array}\right]$
1

15

共
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3.2 Boolean Algebra

- Digital computers contain circuits that implement Boolean functions.
- The simpler that we can make a Boolean function, the smaller the circuit that will result.
- Simpler circuits are cheaper to build, consume less power, and run faster than complex circuits.
- With this in mind, we always want to reduce our Boolean functions to their simplest form.
- There are a number of Boolean identities that help us to do this.

3.2 Boolean Algebra

- Most Boolean identities have an AND (product) form as well as an OR (sum) form. We give our identities using both forms. Our first group is rather intuitive:

Identity Name	AND Form	OR Form
Identity Law	$1 x=x$	$0+x=x$
Null Law	$0 x=0$	$1+x=1$
Idempotent Law	$\mathbf{x x}=\mathbf{x}$	$x+x=x$
Inverse Law	$x x^{\prime}=0$	$x+x^{\prime}=1$

3.2 Boolean Algebra

- Our second group of Boolean identities should be familiar to you from your study of algebra:

$\begin{aligned} & \text { Identity } \\ & \text { Name } \end{aligned}$	$\begin{aligned} & \text { AND } \\ & \text { Form } \end{aligned}$	$\begin{gathered} \text { OR } \\ \text { Form } \end{gathered}$
Commutative Law	$x y=y x$	$x+y=y+x$
Associative Law	$(x y) z=x(y z)$	$(\mathrm{x}+\mathrm{y})+\mathrm{z}=\mathrm{x}$
Distributive Law	$x+y z=(x+y)(x+z)$	$x(y+z)=x y+x z$

${ }^{17}$
\qquad

3.2 Boolean Algebra

- Our last group of Boolean identities are perhaps the most useful.
- If you have studied set theory or formal logic, these laws are also familiar to you.

Identity Name	AND Form	OR Form
Absorption Law Demorgan's Law	$x(x+y)=x$ $(x y)=x^{\prime}+y^{\prime}$	$\mathbf{x}+\mathbf{x y}=\mathbf{x}$ $(x+y)^{\prime}=x^{\prime} y^{\prime}$
D Duble Complement Law	$(x)^{\prime \prime}=\mathbf{x}$	

19
-2012 Jnones 8 Batem Leanin uc

3.2 Boolean Algebra

We can use Boolean identities to simplify:
$\mathbf{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xy}+\mathrm{x}^{\prime} \mathrm{z}+\mathrm{y} \mathbf{z}$
$F(x, y, z)=x y+x^{\prime} z+y z$
$=x y+x^{\prime} z+y z(1)$
$=x y+x^{\prime} z+y z\left(x+x^{\prime}\right)$
$=x y+x^{\prime} z+(y z) x+(y z) x^{\prime}$
$=x y+x^{\prime} z+x(y z)+x^{\prime}(z y)$
$=x y+x^{\prime} z+(x y) z+\left(x^{\prime} z\right) y$
$=x y+(x y) z+x^{\prime} z+\left(x^{\prime} z\right) y$
$=x y(1+z)+x^{\prime} z(1+y)$
$=x y(1)+x^{\prime} z(1)$
$=x y+x^{\prime} z$
${ }^{20}$
(Identity)
(Inverse) (Distributive) (Commutative) (Associative twice) (Commutative) (Distributive) (Null) (Identity) -2072 Jones B Batem Lieminu uc

3.2 Boolean Algebra

- Sometimes it is more economical to build a circuit using the complement of a function (and complementing its result) than it is to implement the function directly.
- DeMorgan's law provides an easy way of finding the complement of a Boolean function.
- Recall DeMorgan's law states:
$(x y)^{\prime}=x^{\prime}+y^{\prime}$ and $(x+y)^{\prime}=x^{\prime} y^{\prime}$
${ }_{21}$
-20212 Jones 8 Batenem leanion uc
\qquad

3.2 Boolean Algebra

- DeMorgan's law can be extended to any number of variables.
- Replace each variable by its complement and change all ANDs to ORs and all ORs to ANDs.
- Thus, we find the the complement of: $F(x, y, z)=(x y)+\left(x^{\prime} y\right)+\left(x z^{\prime}\right)$ is:
$F^{\prime}(x, y, z)=\left((x y)+\left(x^{\prime} y\right)+\left(x z^{\prime}\right)\right)^{\prime}$
$=(x y)^{\prime}\left(x^{\prime} y\right)^{\prime}\left(x z^{\prime}\right)^{\prime}$
$=\left(x^{\prime}+y^{\prime}\right)\left(x+y^{\prime}\right)\left(x^{\prime}+z\right)$
${ }_{22}$

3.2 Boolean Algebra

- Through our exercises in simplifying Boolean expressions, we see that there are numerous ways of stating the same Boolean expression. - These "synonymous" forms are logically equivalent. - Logically equivalent expressions have identical truth tables.
- In order to eliminate as much confusion as possible, designers express Boolean functions in standardized or canonical form

3.2 Boolean Algebra

- There are two canonical forms for Boolean expressions: sum-of-products and product-of-sums. - Recall the Boolean product is the AND operation and the Boolean sum is the OR operation.
- In the sum-of-products form, ANDed variables are ORed together.
-For example: $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xy}+\mathrm{xz}+\mathrm{yz}$
- In the product-of-sums form, ORed variables are ANDed together:
- For example: $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}+\mathrm{y})(\mathrm{x}+\mathrm{z})(\mathrm{y}+\mathrm{z})$

24

3.2 Boolean Algebra

${ }^{25}$

3.3 Logic Gates

- We have looked at Boolean functions in abstract terms.
- In this section, we see that Boolean functions are implemented in digital computer circuits called gates
- A gate is an electronic device that produces a result based on two or more input values.

In reality, gates consist of one to six transistors, but digital designers think of them as a single unit.

- Integrated circuits contain collections of gates suited to a particular purpose.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3.3 Logic Gates

Gates can have multiple inputs and more than one output.

- A second output can be provided for the
complement of the operation.
- We'll see more of this later.

${ }_{32}$

3.4 Digital Components

- The main thing to remember is that combinations of gates implement Boolean functions.
- The circuit below implements the Boolean function $F(x, y, z)=x+y^{\prime} \mathbf{z}$:

We simplify our Boolean expressions so that we can create simpler circuits.
${ }_{3} 3$
0×12 I Iones a Bater Leming uc
\qquad

The SOP Form of the Majority Gate - The SOP form for the 3 -input majority gate is: - $\mathrm{M}=\overline{\mathrm{A}} \mathrm{BC}+\mathrm{ABC}+\mathrm{ABC}+\mathrm{ABC}=\mathrm{m} 3+\mathrm{m} 5+\mathrm{m} 6+\mathrm{m} 7=\Sigma(3,5,6,7)$ - Each of the 2^{n} terms are called minterms, running from 0 to 2^{n} - 1 - Note the relationship between minterm number and boolean value. - Discuss: common-sense interpretation of equation.	

A 2-Level AND-OR Circuit Implements the Majority Function

 The encircled " T " intersections are electrically common (see next slide).

\qquad

Product of Sums (a.k.a. conjunctive normal form)

$$
\text { - AND (i.e., product) of rows with output } 0
$$

- OR (i.e., sum) of variables represents negation of each row
e.g., NOT in row 2 when $x_{1}=1$ OR $x_{2}=0$ OR $x_{3}=1$ or when $x_{1}+\overline{x_{2}}+x_{3}=1$
- $\operatorname{MAJ} 3\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+x_{2}+\overline{x_{3}}\right)\left(x_{1}+\overline{x_{2}}+x_{3}\right)\left(\overline{x_{1}}+x_{2}+x_{3}\right)$ $=\Pi M(0,1,2,4)$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Equivalences

- Every Boolean function can be written as a truth table

Universality

- Every Boolean function can be written as a Boolean formula using AND, OR and NOT operators.
- Every Boolean function can be implemented as a combinational circuit using AND, OR and NOT gates.
- Since AND, OR and NOT gates can be constructed from NAND gates, NAND gates are universal.
- Later you might learn other equivalencies
finite automata \equiv regular expressions
computable functions \equiv programs
....
....
${ }^{4}$
NAND Gates Can Implement AND and

