
11/10/2015

1

Digital Logic I

CMSC 313

Sections 01, 02

Introduction to Digital Logic

2 3

Chapter 3 Objectives

• Understand the relationship between Boolean

logic and digital computer circuits.

• Learn how to design simple logic circuits.

• Understand how digital circuits work together to

form complex computer systems.

11/10/2015

2

A-4 Appendix A - Digital Logic

Computer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

Some Definitions

• Combinational logic: a digital logic circuit in which logical decisions

are made based only on combinations of the inputs. e.g. an adder.

• Sequential logic: a circuit in which decisions are made based on

combinations of the current inputs as well as the past history of

inputs. e.g. a memory unit.

• Finite state machine: a circuit which has an internal state, and

whose outputs are functions of both current inputs and its internal

state. e.g. a vending machine controller.

A-5 Appendix A - Digital Logic

Computer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

The Combinational Logic Unit
• Translates a set of inputs into a set of outputs according to one or

more mapping functions.

• Inputs and outputs for a CLU normally have two distinct (binary)

values: high and low, 1 and 0, 0 and 1, or 5 V. and 0 V. for example.

• The outputs of a CLU are strictly functions of the inputs, and the

outputs are updated immediately after the inputs change. A set of

inputs i0 – in are presented to the CLU, which produces a set of

outputs according to mapping functions f0 – fm.

3-6 Chapter 3 - Arithmetic

Computer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

Ripple Carry Adder

• Two binary numbers A and B are added from right to left, creating a

sum and a carry at the outputs of each full adder for each bit

position.

11/10/2015

3

A-7 Appendix A - Digital Logic

Computer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

Classical Model of a Finite State
Machine

• An FSM is

composed of a

combinational logic

unit and delay

elements (called flip-

flops) in a feedback

path, which

maintains state

information.

A-8 Appendix A - Digital Logic

Computer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

Vending Machine State Transition
Diagram

9

11/10/2015

4

10

3.2 Boolean Algebra

• Boolean algebra is a mathematical system for

the manipulation of variables that can have

one of two values.

– In formal logic, these values are “true” and “false.”

– In digital systems, these values are “on” and “off,”

1 and 0, or “high” and “low.”

• Boolean expressions are created by

performing operations on Boolean variables.

– Common Boolean operators include AND, OR,

and NOT.

11

• A Boolean operator can be

completely described using a

truth table.

• The truth table for the Boolean

operators AND and OR are

shown at the right.

• The AND operator is also known

as a Boolean product. The OR

operator is the Boolean sum.

3.2 Boolean Algebra

12

• The truth table for the

Boolean NOT operator is

shown at the right.

• The NOT operation is most

often designated by a
prime mark (X’). It is

sometimes indicated by an

overbar (X) or an “elbow”
(X).

3.2 Boolean Algebra

11/10/2015

5

13

• A Boolean function has:

• At least one Boolean variable,

• At least one Boolean operator, and

• At least one input from the set {0,1}.

• It produces an output that is also a member of

the set {0,1}.

Now you know why the binary numbering

system is so handy in digital systems.

3.2 Boolean Algebra

14

• The truth table for the

Boolean function:

is shown at the right.

• To make evaluation of the

Boolean function easier,

the truth table contains

extra (shaded) columns to

hold evaluations of

subparts of the function.

3.2 Boolean Algebra

15

• As with common

arithmetic, Boolean

operations have rules of

precedence.

• The NOT operator has

highest priority, followed

by AND and then OR.

• This is how we chose the

(shaded) function

subparts in our table.

3.2 Boolean Algebra

11/10/2015

6

16

• Digital computers contain circuits that implement

Boolean functions.

• The simpler that we can make a Boolean function,

the smaller the circuit that will result.

– Simpler circuits are cheaper to build, consume less

power, and run faster than complex circuits.

• With this in mind, we always want to reduce our

Boolean functions to their simplest form.

• There are a number of Boolean identities that help

us to do this.

3.2 Boolean Algebra

17

• Most Boolean identities have an AND (product)

form as well as an OR (sum) form. We give our

identities using both forms. Our first group is rather

intuitive:

3.2 Boolean Algebra

18

• Our second group of Boolean identities should be

familiar to you from your study of algebra:

3.2 Boolean Algebra

11/10/2015

7

19

• Our last group of Boolean identities are perhaps the

most useful.

• If you have studied set theory or formal logic, these

laws are also familiar to you.

3.2 Boolean Algebra

20

• We can use Boolean identities to simplify:

3.2 Boolean Algebra

F(x,y,z) = xy + x′z + yz

21

• Sometimes it is more economical to build a

circuit using the complement of a function (and

complementing its result) than it is to implement

the function directly.

• DeMorgan’s law provides an easy way of finding

the complement of a Boolean function.

• Recall DeMorgan’s law states:

3.2 Boolean Algebra

(xy)’ = x’+ y’ and (x + y)’= x’y’

11/10/2015

8

22

• DeMorgan’s law can be extended to any number of

variables.

• Replace each variable by its complement and

change all ANDs to ORs and all ORs to ANDs.

• Thus, we find the the complement of:

is:

3.2 Boolean Algebra

23

• Through our exercises in simplifying Boolean

expressions, we see that there are numerous

ways of stating the same Boolean expression.

– These “synonymous” forms are logically equivalent.

– Logically equivalent expressions have identical truth

tables.

• In order to eliminate as much confusion as

possible, designers express Boolean functions in

standardized or canonical form.

3.2 Boolean Algebra

24

• There are two canonical forms for Boolean

expressions: sum-of-products and product-of-sums.

– Recall the Boolean product is the AND operation and the

Boolean sum is the OR operation.

• In the sum-of-products form, ANDed variables are

ORed together.

– For example:

• In the product-of-sums form, ORed variables are

ANDed together:

– For example:

3.2 Boolean Algebra

11/10/2015

9

25

• It is easy to convert a function

to sum-of-products form using

its truth table.

• We are interested in the values

of the variables that make the

function true (=1).

• Using the truth table, we list the

values of the variables that

result in a true function value.

• Each group of variables is then

ORed together.

3.2 Boolean Algebra

26

• The sum-of-products form

for our function is:

We note that this function is not

in simplest terms. Our aim is

only to rewrite our function in

canonical sum-of-products form.

3.2 Boolean Algebra

27

• We have looked at Boolean functions in abstract

terms.

• In this section, we see that Boolean functions are

implemented in digital computer circuits called gates.

• A gate is an electronic device that produces a result

based on two or more input values.

– In reality, gates consist of one to six transistors, but digital

designers think of them as a single unit.

– Integrated circuits contain collections of gates suited to a

particular purpose.

3.3 Logic Gates

11/10/2015

10

28

• The three simplest gates are the AND, OR, and NOT

gates.

• They correspond directly to their respective Boolean

operations, as you can see by their truth tables.

3.3 Logic Gates

29

• Another very useful gate is the exclusive OR

(XOR) gate.

• The output of the XOR operation is true only when

the values of the inputs differ.

Note the special symbol 

for the XOR operation.

3.3 Logic Gates

30

• NAND and

NOR are two

very

important

gates. Their

symbols and

truth tables

are shown at

the right.

3.3 Logic Gates

11/10/2015

11

31

• NAND and NOR

are known as

universal gates

because they are

inexpensive to

manufacture and

any Boolean

function can be

constructed using

only NAND or only

NOR gates.

3.3 Logic Gates

32

• Gates can have multiple inputs and more than

one output.

– A second output can be provided for the

complement of the operation.

– We’ll see more of this later.

3.3 Logic Gates

33

• The main thing to remember is that combinations

of gates implement Boolean functions.

• The circuit below implements the Boolean

function F(x,y,z) = x + y’z:

We simplify our Boolean expressions so

that we can create simpler circuits.

3.4 Digital Components

11/10/2015

12

A-34 Appendix A - Digital Logic

Computer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

The Sum-of-Products (SOP) Form

• Transform the function into a two-level AND-OR equation

• Implement the function with an arrangement of logic gates from the
set {AND, OR, NOT}

• M is true when A=0, B=1, and C=1, or when A=1, B=0, and C=1,
and so on for the remaining cases.

• Represent logic equations by using the sum-of-products (SOP)
form

Truth Table for The

Majority Function

A-35 Appendix A - Digital Logic

Computer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

The SOP Form of the Majority Gate

• The SOP form for the 3-input majority gate is:

• M = ABC + ABC + ABC + ABC = m3 + m5 +m6 +m7 = (3, 5, 6, 7)

• Each of the 2n terms are called minterms, running from 0 to 2n - 1

• Note the relationship between minterm number and boolean value.

• Discuss: common-sense interpretation of equation.

A-36 Appendix A - Digital Logic

Computer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

A 2-Level AND-OR Circuit Implements
the Majority Function

The encircled “T” intersections are electrically common (see next slide).

11/10/2015

13

A-37 Appendix A - Digital Logic

Computer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

Notation Used at Circuit Intersections

38 39

11/10/2015

14

A-40 Appendix A - Digital Logic

Computer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

A 2-Level OR-AND Circuit Implements
the Majority Function

41 42

11/10/2015

15

A-43 Appendix A - Digital Logic

Computer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

NAND Gates Can Implement AND and
OR Gates

Inverted inputs to a NAND gate are implemented with NAND gates.

A-44 Appendix A - Digital Logic

Computer Architecture and Organization by M. Murdocca and V. Heuring © 2007 M. Murdocca and V. Heuring

DeMorgan’s Theorem

Discuss: Applying DeMorgan’s theorem by “pushing the bubbles,”

and “bubble tricks.”

