
10/21/2015

1

C Language V—Dynamic Memory

CMSC 313

Sections 01, 02

Dynamic Memory Allocation

Adapted from Richard Chang, CMSC 313 Spring 2013

Dynamic Memory

• C allows us to allocate memory in which to store data during program

execution.

• Like C++, dynamically allocated memory is take from the heap.

• Dynamic memory has two primary applications

– Dynamically allocating an array

• based on some user input or file data

• better than guessing and defining the array size in our code since it

can't be changed

– Dynamically allocating structs to hold data in some predetermined

arrangement (a data structure)

• Allows an "infinite" amount of data to be stored

Adapted from Richard Chang, CMSC 313 Spring 2013

10/21/2015

2

Dynamic Memory Functions

These functions are used to allocate and free dynamically allocated heap
memory and are part of the standard C library. To use these functions,
include <stdlib.h> .

void *malloc(size_t nrBytes);
Returns a pointer to dynamically allocated memory on the heap of

size nrBytes, or NULL if the request cannot be satisfied. The
memory is uninitialized.

void *calloc(int nrElements, size_t nrBytes);
Same as malloc(), but the memory is initialized to zero

Note that the parameter list is different

void *realloc(void *p, size_t nrBytes);
Changes the size of the memory pointed to by p to nrBytes. The

contents will be unchanged up to the minimum of the old and new
size. If the new size is larger, the new space is uninitialized.
Returns a pointer to the new memory, or NULL if request cannot
be satisfied in which case *p is unchanged.

void free(void *p)
Deallocates the memory pointed to by p which must point to memory

previously allocated by calling one of the functions above.
Does nothing if p is NULL.

Adapted from Dennis Frey CMSC

313 Spring 2011

void* and size_t

The void* type is C' s generic pointer. It may point to any

kind of variable, but may not be dereferenced. Any other
pointer type may be converted to void* and back again

without loss of information. void* is often used as

parameter types to, and return types from, library functions.

size_t is an unsigned integral type that should be used

(rather than int) when expressing "the size of

something" (e.g. an int, array, string, or struct). It too is

often used as a parameter to, or return type from, library
functions. By definition, size_t is the type that is

returned from the sizeof() operator.

Adapted from Dennis Frey CMSC

313 Spring 2011 Adapted from Richard Chang,

CMSC 313 Spring 2013

malloc() for arrays

• malloc() returns a void pointer to uninitialized memory.

• Good programming practice is to cast the void* to the

appropriate pointer type.

• Note the use of sizeof() for portable coding.

• As we' ve seen, the pointer can be used as an array name.

printf("%d\n", p[k];

Exercise: rewrite this code using p as a pointer rather than an

array name

int *p = (int *)malloc(42 * sizeof(int));

for (k = 0; k < 42; k++)

p[k] = k;

for (k = 0; k < 42; k++)

10/21/2015

3

calloc() for arrays

calloc() returns a void pointer to memory that is initialized to

zero.

Note that the parameters to calloc() are different than the

parameters for malloc()

Adapted from Dennis Frey CMSC

313 Spring 2011

int *p = (int *)calloc(42,

for (k = 0; k < 42; k++)

printf("%d\n", p[k]);

sizeof(int));

realloc()

realloc() changes the size of a dynamically allocated memory
previously created by malloc() or calloc() and returns a
void pointer to the new memory.

The contents will be unchanged up to the minimum of the old and
new size. If the new size is larger, the new space is uninitialized.

int *p = (int *)malloc(42 * sizeof(int));

for (k = 0; k < 42; k++)

p[k] = k;

Adapted from Dennis Frey CMSC

313 Spring 2011

p = (int *)realloc(

for (k = 0; k < 42;

printf("p[%d]

p, 99 * sizeof(int));

k++)

= %d\n", k, p[k]);

k < 99; k++)

k * 2;

k < 99;

for (k = 0;

p[k] =

for (k = 0; k++)

%d] = %d\n", k, p[k]);printf("p[

Testing the returned pointer

• malloc(), calloc() and realloc() all
return NULL if unable to fulfill the requested
memory allocation.

• Good programming practice dictates that the
pointer returned should be validated

• char *cp = malloc(22 * sizeof(

char)); if (cp == NULL) {

•fprintf(stderr, "malloc failed\n);

• exit(-12);

• }

Adapted from Dennis Frey CMSC

313 Spring 2011

10/21/2015

4

Testing the returned pointer

• malloc(), calloc() and realloc() all return

NULL if unable to fulfill the requested memory allocation.

• Good programming practice dictates that the pointer

returned should be validated

char *cp = malloc(22 * sizeof(char));

if (cp == NULL) {

fprintf(stderr, "malloc failed\n”);

exit(-12);

}

Adapted from Richard Chang, CMSC 313 Spring 2013

assert()

Since dynamic memory allocation shouldn' t fail unless there is a
serious programming mistake, such failures are often fatal.

Rather than using if statements to check the return values from

malloc(), we can use the assert() macro.

Adapted from Dennis Frey CMSC

313 Spring 2011

To use assert(), you must #include <assert.h>

char *cp =

assert(cp

malloc(22 * sizeof(char));

!= NULL);

How assert() works

• The parameter to assert is any Boolean expression

assert(expression);

– If the Boolean expression is true, nothing happens and execution

continues on the next line

– If the Boolean expression is false, a message is output to stderr and your

program terminates

• The message includes the name of the .c file and the line number of

the assert() that failed

• assert() may be disabled with the preprocessor directive

#define NDEBUG

• assert() may be used for any condition including

– Opening files

– Function parameter checking (preconditions)

Adapted from Richard Chang, CMSC 313 Spring 2013

10/21/2015

5

free()

• free() is used to return dynamically allocated memory back to the
heap to be reused by later calls to malloc(), calloc() or
realloc()

• The parameter to free() must be a pointer previously returned by
one of malloc(), calloc() or realloc()

• Freeing a NULL pointer has no effect

• Failure to free memory is known as a "memory leak" and may lead to
program crash when no more heap memory is available

Adapted from Dennis Frey CMSC

313 Spring 2011

int *p = (int *) calloc(42, sizeof(int));

/* code that uses p */

free(p);

free()

• free() is used to return dynamically allocated memory back to the
heap to be reused by later calls to malloc(), calloc() or
realloc()

• The parameter to free() must be a pointer previously returned by
one of malloc(), calloc() or realloc()

• Freeing a NULL pointer has no effect

• Failure to free memory is known as a "memory leak" and may lead to
program crash when no more heap memory is available

int *p = (int *) calloc(42, sizeof(int));

/* code that uses p */

free(p);

Adapted from Richard Chang, CMSC 313 Spring 2013

Dynamic Memory for structs

In C++
class Person

{

public:

int age;

double gpa;

};

// memory allocation

Person bob = new Person();

bob->age = 42;

Bob->gpa = 3.5;

// bob is eventually freed

delete bob;

In C
typedef struct person

{

int age;

double gpa;

} PERSON ;

/* memory allocation */

PERSON *pbob

= (PERSON *)malloc(sizeof(PERSON));

pbob->age = 42;

pbob->gpa = 3.5;

...

/* explicitly freeing the memory */

free(pbob);

Adapted from Dennis Frey CMSC

313 Spring 2011

10/21/2015

6

Dynamic Teammates

typedef struct player

{

char name[20];

struct player *teammate;

} PLAYER;

PLAYER *getPlayer()

{

char *name = askUserForPlayerName();

PLAYER *p = (PLAYER *)malloc(sizeof(PLAYER));

strncpy(p->name, name, 20);

p->teammate = NULL;

return p;

}

Adapted from Dennis Frey CMSC

313 Spring 2011

Dynamic Teammates (2)

int main () {

int nrPlayers, count = 0;

PLAYER *pPlayer, *pTeam = NULL;

nrPlayers = askUserForNumberOfPlayers();

while (count < nrPlayers) {

pPlayer = getPlayer();

Adapted from Dennis Frey CMSC

313 Spring 2011

pPlayer->teammate =

pTeam = pPlayer;

++count;

pTeam;

}

/* do other stuff with the PLAYERs */

return 0;

}

Dynamic Arrays

As we noted, arrays cannot be returned from functions.

However, pointers to dynamically allocated arrays may be returned.

char *getCharArray(int size)

{

char *cp = (char *)malloc(size * sizeof(char));

assert(cp != NULL);

return cp;

}

Adapted from Dennis Frey CMSC

313 Spring 2011

10/21/2015

7

Dynamic 2-D arrays

• There are now three ways to define a 2-D array,
depending on just how dynamic you want them to
be.

• int board[8] [8];

• An 8 x 8 2-d array of int... Not dynamic at all
• int *board[8];

• An array of 8 pointers to int. Each pointer

represents a row whose size is be

dynamically allocated.
• int **board;

• A pointer to a pointer of ints. Both the number
of rows and the size of each row are
dynamically allocated.

Adapted from Dennis Frey CMSC

313 Spring 2011

Dynamic 2-D arrays

There are now three ways to define a 2-D array, depending on just how

dynamic you want them to be:

int board[8][8];

– An 8 x 8 2-d array of int... Not dynamic at all

int *board[8];

– An array of 8 pointers to int. Each pointer represents a row whose size is

be dynamically allocated.

int **board;

– A pointer to a pointer of ints. Both the number of rows and the size of

each row are dynamically allocated.

Adapted from Richard Chang, CMSC 313 Spring 2013

Perils & Pitfalls

Adapted from Richard Chang, CMSC 313 Spring 2013

10/21/2015

8

Memory-Related Perils and Pitfalls

Dereferencing bad pointers

Reading uninitialized memory

Overwriting memory

Referencing nonexistent variables

Freeing blocks multiple times

Referencing freed blocks

Failing to free blocks

Adapted from Dennis Frey CMSC
313 Spring 2011

Dereferencing Bad Pointers

The classic scanf bug.

Typically reported as an error by the compiler.

Adapted from Dennis Frey CMSC
313 Spring 2011

int val;

...

scanf(“%d”, val);

Reading Uninitialized Memory

Assuming that heap data is initialized to zero

/* return y = A times x */

Adapted from Dennis Frey CMSC
313 Spring 2011

int *matvec(int A[N][N], int x[N]) {

int *y = malloc(N * sizeof(int));

int i, j;

for (i = 0; i < N; i++)

for (j = 0; j< N; j++)

return

y[i] += A[i][j] * x[j];

y;

}

10/21/2015

9

Overwriting Memory

Allocating the (possibly) wrong sized object

Adapted from Dennis Frey CMSC
313 Spring 2011

int i, **p;

p = malloc(N *sizeof(int));

for (i = 0; i < N; i++) {

p[i] = malloc(M * sizeof(int));

}

Overwriting Memory

Not checking the max string size

Basis for classic buffer overflow attacks

1988 Internet worm

Modern attacks on Web servers

AOL/Microsoft IM war

char s[8];

int i;

Adapted from Dennis Frey CMSC
313 Spring 2011

gets(s); /* reads “123456789” from stdin */

Overwriting Memory

Misunderstanding pointer arithmetic

Adapted from Dennis Frey CMSC
313 Spring 2011

int *search(int *p, int val) {

while (*p != NULL && *p != val)

p += sizeof(int);

return p;

}

10/21/2015

10

Referencing Nonexistent Variables

Forgetting that local variables disappear when a function returns

Adapted from Dennis Frey CMSC
313 Spring 2011

int *foo () {

int val;

return &val;

}

Freeing Blocks Multiple Times

Nasty!

Adapted from Dennis Frey CMSC
313 Spring 2011

x = malloc(N * sizeof(int));

<manipulate x>
free(x);

y = malloc(M * sizeof(int));

<manipulate y>
free(x);

Referencing Freed Blocks

Evil!

Adapted from Dennis Frey CMSC
313 Spring 2011

x = malloc(N * sizeof(int));

<manipulate x>
free(x);

...
y = malloc(M *sizeof(int));

for (i = 0; i < M; i++)

y[i] = x[i]++;

10/21/2015

11

Failing to Free
Blocks (Memory

Leaks)
Slow, long-term killer!

Adapted from Dennis Frey CMSC
313 Spring 2011

foo() {

int *x = malloc(N * sizeof(int));

...
return;

}

Failing to Free
Blocks (Memory

Leaks)
Freeing only part of a data structure

struct list {

int val;

struct list *next;

};

Adapted from Dennis Frey CMSC
313 Spring 2011

foo() {

struct list = malloc(sizeof(struct list));

head->val =

head->next

*head

0;

= NULL;

<create and manipulate the rest of the list>
...
free(head);

return;

}

Dealing With Memory Bugs

Conventional debugger (gdb)

Good for finding bad pointer dereferences

Hard to detect the other memory bugs

Some malloc implementations contain checking code

Linux glibc malloc: setenv MALLOC_CHECK_ 2

Adapted from Dennis Frey CMSC
313 Spring 2011

10/21/2015

12

Dealing With Memory Bugs (cont.)

Binary translator: valgrind (Linux)

Powerful debugging and analysis technique

Rewrites text section of executable object file

Can detect all errors as debugging malloc

Can also check each individual reference at runtime

Bad pointers

Overwriting

Referencing outside of allocated block

Garbage collection (Boehm-Weiser Conservative GC)

Let the system free blocks instead of the programmer.

Adapted from Dennis Frey CMSC
313 Spring 2011

