
10/20/2015

1

C Language III

CMSC 313

Sections 01, 02

Midterm Topic Review

Adapted from Richard Chang, CMSC 313 Spring 2013

Pointer Basics

Adapted from Richard Chang, CMSC 313 Spring 2013

10/20/2015

2

What is a pointer ?

• pointer = memory address + type

– A pointer can contain the memory address of any variable type

– A primitive (int, char, float)

– An array

– A struct or union

– Dynamically allocated memory

– Another pointer

– A function

– There’s a lot of syntax required to create and use pointers

Adapted from Dennis Frey CMSC 313 Spring 2011

Why Pointers?

• They allow you to refer to large data structures in a

compact way

• They facilitate sharing between different parts of programs

• They make it possible to get new memory dynamically as

your program is running

• They make it easy to represent relationships among data

items.

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointer Caution

• Undisciplined use can be confusing and thus the source of subtle,

hard-to-find bugs.

– Program crashes

– Memory leaks

– Unpredictable results

• About as "dangerous" as memory addresses in assembly
language programming.

Adapted from Dennis Frey CMSC 313 Spring 2011

10/20/2015

3

C Pointer Variables

• General declaration of a pointer

type *nameOfPointer ;

• Example:

int *ptr1 ;

• Notes:

• * = dereference

• "if I dereference ptr1, I have an int"

• name of pointer variable should indicate it is a pointer

• here x is pointer, y is NOT:

int *x, y;

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointer Operators

* = dereference

The * operator is used to define pointer variables and to

dereference a pointer. “Dereferencing” a pointer means to use

the value of the pointee.

& = address of

The & operator gives the address of a variable.

Recall the use of & in scanf()

Adapted from Dennis Frey CMSC 313 Spring 2011 Adapted from Dennis Frey CMSC 313 Spring 2011

Pointer Examples

int x =

int *ip

1, y = 2 ;

; /* pointer to int */

ip = &x ;

y = *ip ;

*ip = 0 ;

*ip = *ip + 10 ;

*ip += 1 ;

(*ip)++ ;

ip++ ;

10/20/2015

4

Pointer and Variable types

The type of a pointer and its pointee must match

int a = 42;

int *ip;

Adapted from Dennis Frey CMSC 313 Spring 2011

double

double

d = 6.34;

*dp;

ip = &a; /* ok -- types match */

dp = &d; /* ok */

ip = &d; /* compiler error -- type mismatch */

dp = &a; /* compiler error */

Adapted from Dennis Frey CMSC 313 Spring 2011

More Pointer Code

int a = 1, *ptr1;

ptr1 = &a ;

printf("a = %d, &a = %p, ptr1 = %p, *ptr1

a, &a, ptr1, *ptr1) ;

= %d\n",

*ptr1 = 35 ;

printf(“a = %d, &a = %p, ptr1 = %p, *ptr1

&a, ptr1, *ptr1) ;
= %d\n", a,

NULL

• NULL is a special value which may be assigned to a pointer

• NULL indicates that a pointer points to nothing

• Often used when pointers are declared
int *pInt = NULL;

• Used as return value to indicate failure

int *myPtr;

myPtr = myFunction();

if (myPtr == NULL){

/* something bad happened */

}

• Dereferencing a pointer whose value is NULL will result in
program termination.

Adapted from Dennis Frey CMSC 313 Spring 2011

10/20/2015

5

Pointers and Function Arguments

• Since C passes all primitive function arguments “by value”.

/* version 1 of swap */

void swap (int a, int b)

{

int temp;

temp = a;

a = b;

b = temp;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

/* calling swap from somewhere

int x = 42, y = 17;

swap(x, y);

printf(“%d, %d\n”, x, y); //

in main() */

what does this print?

A better swap()

/* pointer version of swap */

Adapted from Dennis Frey CMSC 313 Spring 2011

void swap (int *px,

{

int temp;

temp = *px;

*px = *py;

*py = temp;

}

int *py)

/* calling swap

int x = 42, y =

swap(&x, &y);

from somewhere

17;

in main() */

printf(“%d, %d\n”, x, y); // what does this print?

More Pointer Function Parameters

• Passing the address of variable(s) to a function can be used to

have a function “return” multiple values.

• The pointer arguments point to variables in the calling code which

are changed (“returned”) by the function.

Adapted from Dennis Frey CMSC 313 Spring 2011

10/20/2015

6

Adapted from Dennis Frey CMSC 313 Spring 2011

ConvertTime.c

void convertTime (int time,

{

*pHours = time / 60;

*pMins = time % 60;

}

int *pHours, int *pMins)

int main()

{

int time, hours, minutes;

printf("Enter a time duration

scanf ("%d", &time);

in minutes: ");

convertTime (time, &hours, &minutes);

printf("HH:MM format: %d:%02d\n", hours, minutes);

return 0;

}

An Exercise

• What is the output from this code?

Adapted from Dennis Frey CMSC 313 Spring 2011

void myFunction (int

{

a = 7 ;

a, int *b)

*b = a ;

b = &a ;

*b = 4 ;

printf("%d, %d\n", a, *b) ;

}

int main()

{

int m = 3, n = 5;

myFunction(m, &n) ;

printf("%d, %d\n", m, n) ;

return 0;

}

Pointers to struct

Adapted from Richard Chang, CMSC 313 Spring 2013

/* define a struct for related student data */
typedef

char

char

struct student {

name[50];

major [20];

double gpa;

} STUDENT;

STUDENT bob = {"Bob Smith", "Math", 3.77};

STUDENT sally = {"Sally", "CSEE", 4.0};

/* pStudent is a "pointer

STUDENT *pStudent;
to struct student" */

/* make pStudent point to

pStudent = &bob;
bob */

10/20/2015

7

Pointers to struct(2)

Adapted from Richard Chang, CMSC 313 Spring 2013

Adapted from Dennis Frey CMSC 313 Spring 2011

/* pStudent is a "pointer to struct student” */

STUDENT *pStudent;

/* make pStudent point to bob */

pStudent = &bob;

/* use -> to access

pStudent = &sally;
the members */

printf ("Sally's

printf ("Sally's
name: %s\n", pStudent->name);

gpa: %f\n", pStudent->gpa);

printf ("Bob's name: %s\n", (*pStudent).name);

printf ("Bob's gpa : %f\n", (*pStudent).gpa);

Pointer to struct for functions

Adapted from Richard Chang, CMSC 313 Spring 2013

void printStudent(STUDENT *studentp)

{

printf(“Name :

printf(“Major:

printf(“GPA :

%s\n”, studentp->name);

%s\n”, studentp->major);

%4.2f”, studentp->gpa);

}

Passing a pointer to a struct to a function is more efficient than
passing the struct itself. Why is this true?

Pointers and Arrays

Adapted from Richard Chang, CMSC 313 Spring 2013

10/20/2015

8

Pointers and Arrays

Adapted from Richard Chang, CMSC 313 Spring 2013

• In C, there is a strong relationship between pointers and arrays.

•

•

•

The declaration int

The declaration int

a[10]; defines an array of 10 integers.

*p; defines p as a “pointer to an int”.

The assignment p = a; makes p an alias for the array and sets p
to point to the first element of the array. (We could also write p =
&a[0];)

• We can now reference members of the array using either a or p

a[4] =9;

p[3] = 7;

int x = p[6] + a[4] * 2;

More Pointers and Arrays

• The name of an array is equivalent to a pointer to the first
element of the array and vice-versa.

• Therefore, if a is the name of an array, the expression
a[i] is equivalent to *(a + i).

• It follows then that &a[i] and (a + i) are also equivalent.
Both represent the address of the i-th element beyond a.

• On the other hand, if p is a pointer, then it may be used with a
subscript as if it were the name of an array.

p[i] is identical to *(p + i)

In short, an array-and-index expression is equivalent to a pointer-and- offset
expression and vice-versa.

Adapted from Richard Chang, CMSC 313 Spring 2013

So, what’s the difference?

• If the name of an array is synonymous with a pointer to the first element

of the array, then what’s the difference between an array name and a

pointer?

• An array name can only “point” to the first element of its array. It can

never point to anything else.

• A pointer may be changed to point to any variable or array of the

appropriate type

Adapted from Richard Chang, CMSC 313 Spring 2013

10/20/2015

9

Array Name vs Pointer

Adapted from Richard Chang, CMSC 313 Spring 2013

int g, grades[] = {10, 20, 30, 40 }, myGrade

=

100, yourGrade = 85, *pGrade;

/* grades can be (and usually is) used as

array for (g = 0; g < 4; g++)

printf(“%d\n” grades[g]);

/* grades can be used as a pointer to its

array for (g = 0; g < 4; g++)

printf(“%d\n” *(grades + g);

name */

if it doesn’t change*/

/* but grades can’t point anywhere

grades = &myGrade;

else */

/* compiler error */

/* pGrades can be an alias for grades and used like an array name

*/pGrades = grades;

for(g = 0; g < 4; g++)

printf(“%d\n”, pGrades[g]);

/* or pGrades = &grades[0]; */

/* pGrades can be an alias for grades and be used like a pointer that changes

*/ for (g = 0; g < 4; g++)

printf(“%d\n” *pGrades++);

/* BUT,

pGrades

printf(

pGrades

printf(

pGrades can point to something else other than the grades array

*/

= &myGrade;

“%d\n”, *pGrades);

= &yourGrade;

“%d\n”, *pGrades);

More Pointers & Arrays

• If p points to a particular element of an array, then p + 1 points to the
next element of the array and p + n points n elements after p.

• The meaning a “adding 1 to a pointer” is that

p + 1 points to the next element in the array, REGARDLESS of the
type of the array.

Adapted from Richard Chang, CMSC 313 Spring 2013

Pointer Arithmetic

• If p is an alias for an array of ints, then p[k] is the k-th int and so is
*(p + k).

• If p is an alias for an array of doubles, then

p[k] is the k-th double and so is *(p + k).

• Adding a constant, k, to a pointer (or array name) actually adds k

* sizeof(pointer type) to the value of the pointer.

• This is one important reason why the type of a pointer must be

specified when it’s defined.

Adapted from Richard Chang, CMSC 313 Spring 2013

10/20/2015

10

Pointer Gotcha

Adapted from Richard Chang, CMSC 313 Spring 2013

• But what if p isn’t the alias of an array?

• Consider this code.

int a = 42;

int *p = &a;

printf(

++p;

printf(

“%d\n”, *p); // prints 42

// to what does p point now?

// what gets printed?“%d\n”, *p);

Printing an Array

Adapted from Richard Chang, CMSC 313 Spring 2013

• The code below shows how to use a parameter array name
as a pointer.

void printGrades(int grades[

{

int i;

for (i = 0; i < size; i++)

printf(“%d\n”, *grades);

++grades;

], int size)

}

• What about this prototype?

void printGrades(int *grades, int size);

Passing Arrays

Adapted from Richard Chang, CMSC 313 Spring 2013

• Arrays are passed “by reference” (its address is passed by

value):

int sumArray(int A[], int size) ;

is equivalent to

int sumArray(int *A, int size) ;

• Use A as an array name or as a pointer.

• The compiler always sees A as a pointer. In fact, any error

messages produced will refer to A as an int *

10/20/2015

11

sumArray

int sumArray(int A[], int size)

{

int k, sum = 0;

for (k = 0; k < size; k++)

sum += A[k];

return sum;

}

Adapted from Richard Chang, CMSC 313 Spring 2013

sumArray (2)

int sumArray(int A[], int size)

{

int k, sum = 0;

for (k = 0; k < size; k++)

sum += *(A + k);

return sum;

}

int sumArray(int A[], int size)

{

int k, sum = 0;

for (k = 0; k < size; k++)

}

sum += *A;

++A;

}

return sum;

}

Adapted from Richard Chang, CMSC 313 Spring 2013

