
9/29/2015

1

I/O Architecture, Interrupts, Exceptions

CMSC 313

Sections 01, 02

Fetch Execute Cycle

2

3

• This is a general
depiction of a von
Neumann system:

• These computers
employ a fetch-
decode-execute
cycle to run
programs as
follows . . .

1.8 The von Neumann Model

9/29/2015

2

I/O Architectures

4

5

7.4 I/O Architectures

• We define input/output as a subsystem of

components that moves coded data between

external devices and a host system.

• I/O subsystems include:
– Blocks of main memory that are devoted to I/O

functions.

– Buses that move data into and out of the system.

– Control modules in the host and in peripheral devices

– Interfaces to external components such as keyboards
and disks.

– Cabling or communications links between the host
system and its peripherals.

6

This is a

model I/O

configuration.

7.4 I/O Architectures

9/29/2015

3

7

• I/O can be controlled in five general ways.

– Programmed I/O reserves a register for each I/O

device. Each register is continually polled to detect

data arrival.

– Interrupt-Driven I/O allows the CPU to do other things

until I/O is requested.

– Memory-Mapped I/O shares memory address space

between I/O devices and program memory.

– Direct Memory Access (DMA) offloads I/O processing

to a special-purpose chip that takes care of the details.

– Channel I/O uses dedicated I/O processors.

7.4 I/O Architectures

8

This is an idealized I/O subsystem that uses interrupts.

Each device connects its interrupt line to the interrupt controller.

The controller

signals the

CPU when any

of the interrupt

lines are

asserted.

7.4 I/O Architectures

9

• Recall from Chapter 4 that in a system that uses

interrupts, the status of the interrupt signal is

checked at the top of the fetch-decode-execute

cycle.

• The particular code that is executed whenever an

interrupt occurs is determined by a set of

addresses called interrupt vectors that are stored

in low memory.

• The system state is saved before the interrupt

service routine is executed and is restored

afterward.

7.4 I/O Architectures

We provide a flowchart on the next slide.

9/29/2015

4

10

7.4 I/O Architectures

11

• In memory-mapped I/O devices and main memory

share the same address space.

– Each I/O device has its own reserved block of

memory.

– Memory-mapped I/O therefore looks just like a

memory access from the point of view of the CPU.

– Thus the same instructions to move data to and

from both I/O and memory, greatly simplifying

system design.

• In small systems the low-level details of the data

transfers are offloaded to the I/O controllers built

into the I/O devices.

7.4 I/O Architectures

12

This is a DMA

configuration.

Notice that the DMA

and the CPU share

the bus.

The DMA runs at a

higher priority and

steals memory cycles

from the CPU.

7.4 I/O Architectures

9/29/2015

5

13

• Very large systems employ channel I/O.

• Channel I/O consists of one or more I/O

processors (IOPs) that control various channel

paths.

• Slower devices such as terminals and printers are

combined (multiplexed) into a single faster

channel.

• On IBM mainframes, multiplexed channels are

called multiplexor channels, the faster ones are

called selector channels.

7.4 I/O Architectures

14

• Channel I/O is distinguished from DMA by the

intelligence of the IOPs.

• The IOP negotiates protocols, issues device

commands, translates storage coding to memory

coding, and can transfer entire files or groups of

files independent of the host CPU.

• The host has only to create the program

instructions for the I/O operation and tell the IOP

where to find them.

7.4 I/O Architectures

15

• This is a channel I/O configuration.

7.4 I/O Architectures

9/29/2015

6

Interrupts

16

17

18

9/29/2015

7

19

20

21

9/29/2015

8

22

23

24

9/29/2015

9

25

26

27

9/29/2015

10

Exceptions

28

Built-in Hardware Exceptions

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Allocation
Division Overflow

Single Step

NMI

Breakpoint

Interrupt on Overflow

BOUND out of range

Invalid Machine Code

87 not available

Double Fault

87 Segment Overrun

Invalid Task State Segment

Segment Not Present

Stack Overflow

General Protection Error

Page Fault

(reserved)

87 Error

Int #
00H

01H

02H

03H

04H

05H

06H

07H

08H

09H

0AH

0BH

0CH

0DH

0EH

0FH

10H

30

mailto:chang@umbc.edu

9/29/2015

11

31

32

Summary: Types of Interrupts

•Hardware vs Software

Hardware: I/O, clock tick, power failure, exceptions

Software: INT instruction

• External vs Internal Hardware Interrupts

External interrupts are generated by CPU’s interrupt pin

Internal interrupts (exceptions): div by zero, single step, page fault,
bad opcode, stack overflow, protection, ...

• Synchronous vs Asynchronous Hardware Int.

Synchronous interrupts occur at exactly the same place every time
the program is executed. E.g., bad opcode, div by zero, illegal
memory address.

Asynchronous interrupts occur at unpredictable times relative to the
program. E.g., I/O, clock ticks.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

mailto:chang@umbc.edu

9/29/2015

12

Summary: Interrupt Sequence

Device sends signal to interrupt controller.

Controller uses IRQ# for interrupt # and priority.

Controller sends signal to CPU if the CPU is not already processing
an interrupt with higher priority.

CPU finishes executing the current instruction

CPU saves EFLAGS & return address on the stack.

CPU gets interrupt # from controller using I/O ops.

CPU finds “gate” in Interrupt Description Table.

CPU switches to Interrupt Service Routine (ISR). This may include a
change in privilege level. IF cleared.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Interrupt Sequence (cont.)

ISR saves registers if necessary.

ISR, after initial processing, sets IF to allow interrupts.

ISR processes the interrupt.

ISR restores registers if necessary.

ISR sends End of Interrupt (EOI) to controller.

ISR returns from interrupt using IRET. EFLAGS (inlcuding IF) & return
address restored.

CPU executes the next instruction.

Interrupt controller waits for next interrupt and manages pending
interrupts.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

mailto:chang@umbc.edu
mailto:chang@umbc.edu

