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Data Representation II

CMSC 313

Sections 01, 02

2

2.4 Signed Integer Representation

• The conversions we have so far presented have 

involved only unsigned numbers.

• To represent signed integers, computer systems 

allocate the high-order bit to indicate the sign of a 

number.

– The high-order bit is the leftmost bit.  It is also called 

the most significant bit.

– 0 is used to indicate a positive number; 1 indicates 

a negative number.

• The remaining bits contain the value of the number 

(but this can be interpreted different ways)
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• There are three ways in which signed binary 

integers may be expressed:  

– Signed magnitude 

– One’s complement

– Two’s complement

• In an 8-bit word, signed magnitude

representation places the absolute value of 

the number in the 7 bits to the right of the 

sign bit.

2.4 Signed Integer Representation
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• For example, in 8-bit signed magnitude 

representation:

+3 is: 00000011

- 3 is: 10000011

• Computers perform arithmetic operations on 

signed magnitude numbers in much the same 

way as humans carry out pencil and paper 

arithmetic.

– Humans often ignore the signs of the 

operands while performing a calculation, 

applying the appropriate sign after the 

calculation is complete.

2.4 Signed Integer Representation
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• Binary addition is as easy as it gets. You need 

to know only four rules:
0 + 0 =  0 0 + 1 =  1

1 + 0 =  1 1 + 1 = 10

• The simplicity of this system makes it possible 

for digital circuits to carry out arithmetic 

operations.

– We will describe these circuits in Chapter 3.

Let’s see how the addition rules work with signed 

magnitude numbers . . .

2.4 Signed Integer Representation
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• Example:

– Using signed magnitude 

binary arithmetic, find the 

sum of 75 and 46.

• First, convert 75 and 46 to 

binary, and arrange as a sum, 

but separate the (positive) 

sign bits from the magnitude 

bits.

2.4 Signed Integer Representation
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• Example:

– Using signed magnitude 

binary arithmetic, find the 

sum of 75 and 46.

• Just as in decimal arithmetic, 

we find the sum starting with 

the rightmost bit and work left.

2.4 Signed Integer Representation
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• Example:

– Using signed magnitude 

binary arithmetic, find the 

sum of 75 and 46.

• In the second bit, we have a 

carry, so we note it above the 

third bit.

2.4 Signed Integer Representation
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• Example:

– Using signed magnitude 

binary arithmetic, find the 

sum of 75 and 46.

• The third and fourth bits also 

give us carries.

2.4 Signed Integer Representation
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• Example:

– Using signed magnitude 

binary arithmetic, find the 

sum of 75 and 46.

• Once we have worked our way 

through all eight bits, we are 

done.

In this example, we were careful to pick two values whose 

sum would fit into seven bits.  If that is not the case, we 

have a problem.

2.4 Signed Integer Representation
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• Example:

– Using signed magnitude 

binary arithmetic, find the 

sum of 107 and 46.

• We see that the carry from the 

seventh bit overflows and is 

discarded, giving us the 

erroneous result: 107 + 46 = 25. 

2.4 Signed Integer Representation
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• The signs in signed 

magnitude representation 

work just like the signs in 

pencil and paper arithmetic.

– Example: Using signed 

magnitude binary arithmetic, 

find the sum of - 46 and -

25.
• Because the signs are the same, all we do is 

add the numbers and supply the negative sign 

when we are done.

2.4 Signed Integer Representation
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• Mixed sign addition  (or 

subtraction) is done the 

same way.

– Example: Using signed 

magnitude binary arithmetic, 

find the sum of  46 and - 25.

• The sign of the result gets the sign of the number 

that is larger.

– Note the “borrows” from the second and sixth bits.

2.4 Signed Integer Representation
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• Signed magnitude representation is easy for 

people to understand, but it requires 
complicated computer hardware.

• Another disadvantage of signed magnitude is 

that it allows two different representations for 

zero: positive zero and negative zero.

• For these reasons (among others) computers 

systems employ complement systems for 

numeric value representation.

2.4 Signed Integer Representation
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• In complement systems, negative values are 

represented by some difference between a 
number and its base.

• The diminished radix complement of a non-zero 

number N in base r with d digits is (rd – 1) – N

• In the binary system, this gives us one’s 

complement. It amounts to little more than flipping 

the bits of a binary number.

2.4 Signed Integer Representation
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• For example, using 8-bit one’s complement 
representation:

+ 3 is: 00000011

- 3 is: 11111100

• In one’s complement representation, as with 
signed magnitude, negative values are 
indicated by a 1 in the high order bit.

• Complement systems are useful because they 
eliminate the need for subtraction. The 
difference of two values is found by adding the 
minuend to the complement of the subtrahend.

2.4 Signed Integer Representation

17

• With one’s complement 

addition, the carry bit is 

“carried around” and added 

to the sum.

– Example: Using one’s 

complement binary 

arithmetic, find the sum of 

48 and - 19

We note that 19 in binary is 00010011, 

so -19 in one’s complement is: 11101100.

2.4 Signed Integer Representation

18

• Although the “end carry around” adds some 
complexity, one’s complement is simpler to 
implement than signed magnitude.

• But it still has the disadvantage of having two 
different representations for zero: positive zero 
and negative zero.

• Two’s complement solves this problem.

• Two’s complement is the radix complement of the 
binary numbering system; the radix complement
of a non-zero number N in base r with d digits is 
rd – N.

2.4 Signed Integer Representation
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• To express a value in two’s complement 
representation:

– If the number is positive, just convert it to binary 
and you’re done.

– If the number is negative, find the one’s 
complement of the number and then add 1.

• Example:

– In 8-bit binary, 3 is: 
00000011

– -3 using one’s complement representation is:
11111100

– Adding 1 gives us -3 in two’s complement form:
11111101.

2.4 Signed Integer Representation
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• With two’s complement arithmetic, all we do is add 

our two binary numbers. Just discard any carries 

emitting from the high order bit.

We note that 19 in binary is: 00010011,

so -19 using one’s complement is: 11101100,

and -19 using two’s complement is: 11101101.

– Example: Using one’s 

complement binary 

arithmetic, find the sum of 

48 and - 19.

2.4 Signed Integer Representation
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• Lets compare our representations: 

2.4 Signed Integer Representation
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• When we use any finite number of bits to 

represent a number, we always run the risk of 

the result of our calculations becoming too large 

or too small to be stored in the computer.

• While we can’t always prevent overflow, we can 

always detect overflow.

• In complement arithmetic, an overflow condition 

is easy to detect.

2.4 Signed Integer Representation
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• Example:

– Using two’s complement binary 

arithmetic, find the sum of 107 

and 46.

• We see that the nonzero carry 

from the seventh bit overflows into 

the sign bit, giving us the 

erroneous result: 107 + 46 = -103. 

But overflow into the sign bit does not 

always mean that we have an error.

2.4 Signed Integer Representation
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• Example:

– Using two’s complement binary 
arithmetic, find the sum of 23 
and -9.

– We see that there is carry into 

the sign bit and carry out. The 

final result is correct: 23 + (-9) 

= 14.

Rule for detecting signed two’s complement overflow: When 

the “carry in” and the “carry out” of the sign bit differ, 

overflow has occurred. If the carry into the sign bit equals the 

carry out of the sign bit, no overflow has occurred. 

2.4 Signed Integer Representation
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• Signed and unsigned numbers are both useful.

– For example, memory addresses are always 

unsigned.

• Using the same number of bits, unsigned integers 

can express twice as many “positive” values as 

signed numbers.

• Trouble arises if an unsigned value “wraps around.”

– In four bits: 1111 + 1 = 0000.

• Good programmers stay alert for this kind of 

problem.

2.4 Signed Integer Representation
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• Overflow and carry are tricky ideas.

• Signed number overflow means nothing in the 

context of unsigned numbers, which set a carry 

flag instead of an overflow flag.

• If a carry out of the leftmost bit occurs with an 

unsigned number, overflow has occurred.

• Carry and overflow occur independently of each 

other. 

The table on the next slide summarizes these ideas.

2.4 Signed Integer Representation
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2.4 Signed Integer Representation
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• We can do binary multiplication and division by 2 
very easily using an arithmetic shift operation

• A left arithmetic shift inserts a 0 in for the 
rightmost bit and shifts everything else left one 
bit; in effect, it multiplies by 2

• A right arithmetic shift shifts everything one bit to 
the right, but copies the sign bit; it divides by 2

• Let’s look at some examples. 

2.4 Signed Integer Representation
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Example:

Multiply the value 11 (expressed using 8-bit signed two’s 
complement representation) by 2.

We start with the binary value for 11:

00001011  (+11)

We shift left one place, resulting in:

00010110  (+22)

The sign bit has not changed, so the value is valid.

To multiply 11 by 4, we simply perform a left shift twice.

2.4 Signed Integer Representation
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Example:

Divide the value 12 (expressed using 8-bit signed two’s 
complement representation) by 2.

We start with the binary value for 12:

00001100  (+12)

We shift left one place, resulting in:

00000110  (+6)

(Remember, we carry the sign bit to the left as we shift.)

To divide 12 by 4, we right shift twice.

2.4 Signed Integer Representation
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• Calculations aren’t useful until their results can 

be displayed in a manner that is meaningful to 

people.

• We also need to store the results of calculations, 

and provide a means for data input.

• Thus, human-understandable characters must be 

converted to computer-understandable bit 

patterns using some sort of character encoding 

scheme.

2.6 Character Codes
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• As computers have evolved, character codes 

have evolved.

• Larger computer memories and storage 

devices permit richer character codes.

• The earliest computer coding systems used six 

bits.

• Binary-coded decimal (BCD) was one of these 

early codes. It was used by IBM mainframes in 

the 1950s and 1960s.

2.6 Character Codes
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• In 1964, BCD was extended to an 8-bit code, 

Extended Binary-Coded Decimal Interchange 

Code (EBCDIC).

• EBCDIC was one of the first widely-used 

computer codes that supported upper and

lowercase alphabetic characters, in addition to 

special characters, such as punctuation and 

control characters.

• EBCDIC and BCD are still in use by IBM 

mainframes today. 

2.6 Character Codes
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• Other computer manufacturers chose the 7-bit 

ASCII (American Standard Code for Information 

Interchange) as a replacement for 6-bit codes.

• While BCD and EBCDIC were based upon 

punched card codes, ASCII was based upon 

telecommunications (Telex) codes.

• Until recently, ASCII was the dominant 

character code outside the IBM mainframe 

world.

2.6 Character Codes
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• Many of today’s systems embrace Unicode, a 16-

bit system that can encode the characters of 

every language in the world.

– The Java programming language, and some 

operating systems now use Unicode as their 

default character code.

• The Unicode codespace is divided into six parts.  

The first part is for Western alphabet codes, 

including English, Greek, and Russian.

2.6 Character Codes
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• The Unicode codes-

pace allocation is 

shown at the right.

• The lowest-numbered 

Unicode characters 

comprise the ASCII 

code.

• The highest provide for 

user-defined codes.

2.6 Character Codes

Floating Point Formats

38
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• Floating-point numbers allow an arbitrary 

number of decimal places to the right of the 

decimal point.

– For example: 0.5  0.25 = 0.125

• They are often expressed in scientific notation.

– For example:

0.125 = 1.25  10-1

5,000,000 = 5.0  106

2.5 Floating-Point Representation
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• Computers use a form of scientific notation for 

floating-point representation 

• Numbers written in scientific notation have three 

components:

2.5 Floating-Point Representation
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• Computer representation of a floating-point 

number consists of three fixed-size fields:

• This is the standard arrangement of these fields.

Note: Although “significand” and “mantissa” do not technically mean the same 

thing, many people use these terms interchangeably.  We use the term “significand” 

to refer to the fractional part of a floating point number.

2.5 Floating-Point Representation

42

• The one-bit sign field is the sign of the stored value.

• The size of the exponent field determines the range 

of values that can be represented.

• The size of the significand determines the precision 

of the representation.

2.5 Floating-Point Representation
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IEEE-754 32-bit Floating Point Format

• sign bit, 8-bit exponent, 23-bit mantissa

• normalized as 1.xxxxx

• leading 1 is hidden

• 8-bit exponent in excess 127 format

– NOT excess 128

– 0000 0000 and 1111 1111 are reserved

• +0 and -0 is zero exponent and zero mantissa

• 1111 1111 exponent and zero mantissa is infinity

UMBC, CMSC313, Richard Chang <chang@umbc.edu>
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• Example: Express -3.75 as a floating point number 

using IEEE single precision.

• First, let’s normalize according to IEEE rules:

– 3.75 = -11.112 = -1.111 x 21

– The bias is 127, so we add 127 + 1 = 128 (this is our 

exponent)

– The first 1 in the significand is implied, so we have:

– Since we have an implied 1 in the significand, this equates 

to

-(1).1112 x 2 (128 – 127) = -1.1112 x 21 = -11.112 = -3.75. 

(implied)

2.5 Floating-Point Representation

45

• Using the IEEE-754 single precision floating point 

standard: 

– An exponent of 255 indicates a special value.

• If the significand is zero, the value is   infinity.

• If the significand is nonzero, the value is NaN, “not 

a number,” often used to flag an error condition.

• Using the double precision standard:

– The “special” exponent value for a double precision 

number is 2047, instead of the 255 used by the single 

precision standard.

2.5 Floating-Point Representation
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Memory Organization, “Endian”ness
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Random Access Memory (RAM)

• A single byte of memory holds 8 binary digits (bits).

• Each byte of memory has its own address.

• A 32-bit CPU can address 4 gigabytes of memory, but a 

machine may have much less (e.g., 256MB).

• For now, think of RAM as one big array of bytes.

• The data stored in a byte of memory is not typed.

• The assembly language programmer must remember 

whether the data stored in a byte is a character, an 

unsigned number, a signed number, part of a multi-byte 

number, ...
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Common Sizes for Data Types

• A byte is composed of 8 bits. Two nibbles make up a byte.

• Halfwords, words, doublewords, and quadwords are composed 

of bytes as shown below:

• Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring48

Bit 0

Nibble 0110

Byte 10110000

16-bit word 

(halfword)

11001001 01000110

32-bit word 10110100 00110101 10011001 01011000

64-bit word 

(double)

01011000 01010101 10110000 11110011 

11001110 11101110 01111000 00110101

128-bit word 

(quad)

01011000 01010101 10110000 11110011 

11001110 11101110 01111000 00110101 

00001011 10100110 11110010 11100110 

10100100 01000100 10100101 01010001
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• Byte ordering, or endianness, is another major 

architectural consideration.

• If we have a two-byte integer, the integer may be 

stored so that the least significant byte is followed 

by the most significant byte or vice versa.

– In little endian machines, the least significant byte 

is followed by the most significant byte.

– Big endian machines store the most significant byte 

first (at the lower address).

5.2 Instruction Formats
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• As an example, suppose we have the 

hexadecimal number 0x12345678.

• The big endian and small endian arrangements of 

the bytes are shown below.

5.2 Instruction Formats
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5.2 Instruction Formats

• Big endian:

– Is more natural.

– The sign of the number can be determined by 

looking at the byte at address offset 0.

– Strings and integers are stored in the same order.

• Little endian:

– Makes it easier to place values on non-word 

boundaries.

– Conversion from a 16-bit integer address to a 32-bit 

integer address does not require any arithmetic.


