
9/3/2015

1

Data Representation II

CMSC 313

Sections 01, 02

2

2.4 Signed Integer Representation

• The conversions we have so far presented have

involved only unsigned numbers.

• To represent signed integers, computer systems

allocate the high-order bit to indicate the sign of a

number.

– The high-order bit is the leftmost bit. It is also called

the most significant bit.

– 0 is used to indicate a positive number; 1 indicates

a negative number.

• The remaining bits contain the value of the number

(but this can be interpreted different ways)

3

• There are three ways in which signed binary

integers may be expressed:

– Signed magnitude

– One’s complement

– Two’s complement

• In an 8-bit word, signed magnitude

representation places the absolute value of

the number in the 7 bits to the right of the

sign bit.

2.4 Signed Integer Representation

9/3/2015

2

4

• For example, in 8-bit signed magnitude

representation:

+3 is: 00000011

- 3 is: 10000011

• Computers perform arithmetic operations on

signed magnitude numbers in much the same

way as humans carry out pencil and paper

arithmetic.

– Humans often ignore the signs of the

operands while performing a calculation,

applying the appropriate sign after the

calculation is complete.

2.4 Signed Integer Representation

5

• Binary addition is as easy as it gets. You need

to know only four rules:
0 + 0 = 0 0 + 1 = 1

1 + 0 = 1 1 + 1 = 10

• The simplicity of this system makes it possible

for digital circuits to carry out arithmetic

operations.

– We will describe these circuits in Chapter 3.

Let’s see how the addition rules work with signed

magnitude numbers . . .

2.4 Signed Integer Representation

6

• Example:

– Using signed magnitude

binary arithmetic, find the

sum of 75 and 46.

• First, convert 75 and 46 to

binary, and arrange as a sum,

but separate the (positive)

sign bits from the magnitude

bits.

2.4 Signed Integer Representation

9/3/2015

3

7

• Example:

– Using signed magnitude

binary arithmetic, find the

sum of 75 and 46.

• Just as in decimal arithmetic,

we find the sum starting with

the rightmost bit and work left.

2.4 Signed Integer Representation

8

• Example:

– Using signed magnitude

binary arithmetic, find the

sum of 75 and 46.

• In the second bit, we have a

carry, so we note it above the

third bit.

2.4 Signed Integer Representation

9

• Example:

– Using signed magnitude

binary arithmetic, find the

sum of 75 and 46.

• The third and fourth bits also

give us carries.

2.4 Signed Integer Representation

9/3/2015

4

10

• Example:

– Using signed magnitude

binary arithmetic, find the

sum of 75 and 46.

• Once we have worked our way

through all eight bits, we are

done.

In this example, we were careful to pick two values whose

sum would fit into seven bits. If that is not the case, we

have a problem.

2.4 Signed Integer Representation

11

• Example:

– Using signed magnitude

binary arithmetic, find the

sum of 107 and 46.

• We see that the carry from the

seventh bit overflows and is

discarded, giving us the

erroneous result: 107 + 46 = 25.

2.4 Signed Integer Representation

12

• The signs in signed

magnitude representation

work just like the signs in

pencil and paper arithmetic.

– Example: Using signed

magnitude binary arithmetic,

find the sum of - 46 and -

25.
• Because the signs are the same, all we do is

add the numbers and supply the negative sign

when we are done.

2.4 Signed Integer Representation

9/3/2015

5

13

• Mixed sign addition (or

subtraction) is done the

same way.

– Example: Using signed

magnitude binary arithmetic,

find the sum of 46 and - 25.

• The sign of the result gets the sign of the number

that is larger.

– Note the “borrows” from the second and sixth bits.

2.4 Signed Integer Representation

14

• Signed magnitude representation is easy for

people to understand, but it requires
complicated computer hardware.

• Another disadvantage of signed magnitude is

that it allows two different representations for

zero: positive zero and negative zero.

• For these reasons (among others) computers

systems employ complement systems for

numeric value representation.

2.4 Signed Integer Representation

15

• In complement systems, negative values are

represented by some difference between a
number and its base.

• The diminished radix complement of a non-zero

number N in base r with d digits is (rd – 1) – N

• In the binary system, this gives us one’s

complement. It amounts to little more than flipping

the bits of a binary number.

2.4 Signed Integer Representation

9/3/2015

6

16

• For example, using 8-bit one’s complement
representation:

+ 3 is: 00000011

- 3 is: 11111100

• In one’s complement representation, as with
signed magnitude, negative values are
indicated by a 1 in the high order bit.

• Complement systems are useful because they
eliminate the need for subtraction. The
difference of two values is found by adding the
minuend to the complement of the subtrahend.

2.4 Signed Integer Representation

17

• With one’s complement

addition, the carry bit is

“carried around” and added

to the sum.

– Example: Using one’s

complement binary

arithmetic, find the sum of

48 and - 19

We note that 19 in binary is 00010011,

so -19 in one’s complement is: 11101100.

2.4 Signed Integer Representation

18

• Although the “end carry around” adds some
complexity, one’s complement is simpler to
implement than signed magnitude.

• But it still has the disadvantage of having two
different representations for zero: positive zero
and negative zero.

• Two’s complement solves this problem.

• Two’s complement is the radix complement of the
binary numbering system; the radix complement
of a non-zero number N in base r with d digits is
rd – N.

2.4 Signed Integer Representation

9/3/2015

7

19

• To express a value in two’s complement
representation:

– If the number is positive, just convert it to binary
and you’re done.

– If the number is negative, find the one’s
complement of the number and then add 1.

• Example:

– In 8-bit binary, 3 is:
00000011

– -3 using one’s complement representation is:
11111100

– Adding 1 gives us -3 in two’s complement form:
11111101.

2.4 Signed Integer Representation

20

• With two’s complement arithmetic, all we do is add

our two binary numbers. Just discard any carries

emitting from the high order bit.

We note that 19 in binary is: 00010011,

so -19 using one’s complement is: 11101100,

and -19 using two’s complement is: 11101101.

– Example: Using one’s

complement binary

arithmetic, find the sum of

48 and - 19.

2.4 Signed Integer Representation

21

• Lets compare our representations:

2.4 Signed Integer Representation

9/3/2015

8

22

• When we use any finite number of bits to

represent a number, we always run the risk of

the result of our calculations becoming too large

or too small to be stored in the computer.

• While we can’t always prevent overflow, we can

always detect overflow.

• In complement arithmetic, an overflow condition

is easy to detect.

2.4 Signed Integer Representation

23

• Example:

– Using two’s complement binary

arithmetic, find the sum of 107

and 46.

• We see that the nonzero carry

from the seventh bit overflows into

the sign bit, giving us the

erroneous result: 107 + 46 = -103.

But overflow into the sign bit does not

always mean that we have an error.

2.4 Signed Integer Representation

24

• Example:

– Using two’s complement binary
arithmetic, find the sum of 23
and -9.

– We see that there is carry into

the sign bit and carry out. The

final result is correct: 23 + (-9)

= 14.

Rule for detecting signed two’s complement overflow: When

the “carry in” and the “carry out” of the sign bit differ,

overflow has occurred. If the carry into the sign bit equals the

carry out of the sign bit, no overflow has occurred.

2.4 Signed Integer Representation

9/3/2015

9

25

• Signed and unsigned numbers are both useful.

– For example, memory addresses are always

unsigned.

• Using the same number of bits, unsigned integers

can express twice as many “positive” values as

signed numbers.

• Trouble arises if an unsigned value “wraps around.”

– In four bits: 1111 + 1 = 0000.

• Good programmers stay alert for this kind of

problem.

2.4 Signed Integer Representation

26

• Overflow and carry are tricky ideas.

• Signed number overflow means nothing in the

context of unsigned numbers, which set a carry

flag instead of an overflow flag.

• If a carry out of the leftmost bit occurs with an

unsigned number, overflow has occurred.

• Carry and overflow occur independently of each

other.

The table on the next slide summarizes these ideas.

2.4 Signed Integer Representation

27

2.4 Signed Integer Representation

9/3/2015

10

28

• We can do binary multiplication and division by 2
very easily using an arithmetic shift operation

• A left arithmetic shift inserts a 0 in for the
rightmost bit and shifts everything else left one
bit; in effect, it multiplies by 2

• A right arithmetic shift shifts everything one bit to
the right, but copies the sign bit; it divides by 2

• Let’s look at some examples.

2.4 Signed Integer Representation

29

Example:

Multiply the value 11 (expressed using 8-bit signed two’s
complement representation) by 2.

We start with the binary value for 11:

00001011 (+11)

We shift left one place, resulting in:

00010110 (+22)

The sign bit has not changed, so the value is valid.

To multiply 11 by 4, we simply perform a left shift twice.

2.4 Signed Integer Representation

30

Example:

Divide the value 12 (expressed using 8-bit signed two’s
complement representation) by 2.

We start with the binary value for 12:

00001100 (+12)

We shift left one place, resulting in:

00000110 (+6)

(Remember, we carry the sign bit to the left as we shift.)

To divide 12 by 4, we right shift twice.

2.4 Signed Integer Representation

9/3/2015

11

Character Codes

31

32

• Calculations aren’t useful until their results can

be displayed in a manner that is meaningful to

people.

• We also need to store the results of calculations,

and provide a means for data input.

• Thus, human-understandable characters must be

converted to computer-understandable bit

patterns using some sort of character encoding

scheme.

2.6 Character Codes

33

• As computers have evolved, character codes

have evolved.

• Larger computer memories and storage

devices permit richer character codes.

• The earliest computer coding systems used six

bits.

• Binary-coded decimal (BCD) was one of these

early codes. It was used by IBM mainframes in

the 1950s and 1960s.

2.6 Character Codes

9/3/2015

12

34

• In 1964, BCD was extended to an 8-bit code,

Extended Binary-Coded Decimal Interchange

Code (EBCDIC).

• EBCDIC was one of the first widely-used

computer codes that supported upper and

lowercase alphabetic characters, in addition to

special characters, such as punctuation and

control characters.

• EBCDIC and BCD are still in use by IBM

mainframes today.

2.6 Character Codes

35

• Other computer manufacturers chose the 7-bit

ASCII (American Standard Code for Information

Interchange) as a replacement for 6-bit codes.

• While BCD and EBCDIC were based upon

punched card codes, ASCII was based upon

telecommunications (Telex) codes.

• Until recently, ASCII was the dominant

character code outside the IBM mainframe

world.

2.6 Character Codes

36

• Many of today’s systems embrace Unicode, a 16-

bit system that can encode the characters of

every language in the world.

– The Java programming language, and some

operating systems now use Unicode as their

default character code.

• The Unicode codespace is divided into six parts.

The first part is for Western alphabet codes,

including English, Greek, and Russian.

2.6 Character Codes

9/3/2015

13

37

• The Unicode codes-

pace allocation is

shown at the right.

• The lowest-numbered

Unicode characters

comprise the ASCII

code.

• The highest provide for

user-defined codes.

2.6 Character Codes

Floating Point Formats

38

39

• Floating-point numbers allow an arbitrary

number of decimal places to the right of the

decimal point.

– For example: 0.5  0.25 = 0.125

• They are often expressed in scientific notation.

– For example:

0.125 = 1.25  10-1

5,000,000 = 5.0  106

2.5 Floating-Point Representation

9/3/2015

14

40

• Computers use a form of scientific notation for

floating-point representation

• Numbers written in scientific notation have three

components:

2.5 Floating-Point Representation

41

• Computer representation of a floating-point

number consists of three fixed-size fields:

• This is the standard arrangement of these fields.

Note: Although “significand” and “mantissa” do not technically mean the same

thing, many people use these terms interchangeably. We use the term “significand”

to refer to the fractional part of a floating point number.

2.5 Floating-Point Representation

42

• The one-bit sign field is the sign of the stored value.

• The size of the exponent field determines the range

of values that can be represented.

• The size of the significand determines the precision

of the representation.

2.5 Floating-Point Representation

9/3/2015

15

IEEE-754 32-bit Floating Point Format

• sign bit, 8-bit exponent, 23-bit mantissa

• normalized as 1.xxxxx

• leading 1 is hidden

• 8-bit exponent in excess 127 format

– NOT excess 128

– 0000 0000 and 1111 1111 are reserved

• +0 and -0 is zero exponent and zero mantissa

• 1111 1111 exponent and zero mantissa is infinity

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

43

44

• Example: Express -3.75 as a floating point number

using IEEE single precision.

• First, let’s normalize according to IEEE rules:

– 3.75 = -11.112 = -1.111 x 21

– The bias is 127, so we add 127 + 1 = 128 (this is our

exponent)

– The first 1 in the significand is implied, so we have:

– Since we have an implied 1 in the significand, this equates

to

-(1).1112 x 2 (128 – 127) = -1.1112 x 21 = -11.112 = -3.75.

(implied)

2.5 Floating-Point Representation

45

• Using the IEEE-754 single precision floating point

standard:

– An exponent of 255 indicates a special value.

• If the significand is zero, the value is  infinity.

• If the significand is nonzero, the value is NaN, “not

a number,” often used to flag an error condition.

• Using the double precision standard:

– The “special” exponent value for a double precision

number is 2047, instead of the 255 used by the single

precision standard.

2.5 Floating-Point Representation

9/3/2015

16

Memory Organization, “Endian”ness

46

Random Access Memory (RAM)

• A single byte of memory holds 8 binary digits (bits).

• Each byte of memory has its own address.

• A 32-bit CPU can address 4 gigabytes of memory, but a

machine may have much less (e.g., 256MB).

• For now, think of RAM as one big array of bytes.

• The data stored in a byte of memory is not typed.

• The assembly language programmer must remember

whether the data stored in a byte is a character, an

unsigned number, a signed number, part of a multi-byte

number, ...

47

Common Sizes for Data Types

• A byte is composed of 8 bits. Two nibbles make up a byte.

• Halfwords, words, doublewords, and quadwords are composed

of bytes as shown below:

• Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring48

Bit 0

Nibble 0110

Byte 10110000

16-bit word

(halfword)

11001001 01000110

32-bit word 10110100 00110101 10011001 01011000

64-bit word

(double)

01011000 01010101 10110000 11110011

11001110 11101110 01111000 00110101

128-bit word

(quad)

01011000 01010101 10110000 11110011

11001110 11101110 01111000 00110101

00001011 10100110 11110010 11100110

10100100 01000100 10100101 01010001

9/3/2015

17

49

• Byte ordering, or endianness, is another major

architectural consideration.

• If we have a two-byte integer, the integer may be

stored so that the least significant byte is followed

by the most significant byte or vice versa.

– In little endian machines, the least significant byte

is followed by the most significant byte.

– Big endian machines store the most significant byte

first (at the lower address).

5.2 Instruction Formats

50

• As an example, suppose we have the

hexadecimal number 0x12345678.

• The big endian and small endian arrangements of

the bytes are shown below.

5.2 Instruction Formats

51

5.2 Instruction Formats

• Big endian:

– Is more natural.

– The sign of the number can be determined by

looking at the byte at address offset 0.

– Strings and integers are stored in the same order.

• Little endian:

– Makes it easier to place values on non-word

boundaries.

– Conversion from a 16-bit integer address to a 32-bit

integer address does not require any arithmetic.

