CMSC 313 Fall2009
 Midterm Exam 1 Section 01
 October 12, 2009

Name \qquad Score \qquad

UMBC Username \qquad
Notes:
a. Please write clearly. Unreadable answers receive no credit.
b. For short answer questions your answer should be short, clear and to the point, not long and rambling.
c. For True / False question, write the word TRUE or FALSE; do not use the letters T and F . Using \boldsymbol{T} and F will result in a 2-point deduction.
d. There are no intentional syntax errors in any code provided with this exam. If you think you see an error that would affect your answer, please bring it to my attention.
e. You may assume that any necessary .h files have been \#included where necessary.

True / False (2 points each)

1. \qquad When an array is passed to a function a copy of the array elements is made for the function to manipulate.
2. \qquad The sizeof () operator is used to determine the number of bytes required to store a program object.
3. \qquad The compiler will detect any attempt to use an invalid array index.
4. \qquad If \mathbf{p} is a pointer, then the expression $\mathbf{p}+\mathbf{1}$ adds the size of p's type to \mathbf{p}
5. \qquad For any two's complement integer, $\mathbf{- x}=\sim \mathbf{x}+\mathbf{1}$
6. \qquad Both scanf () and fscanf() can be used to read user input from the standard input.
7. \qquad The size of a struct is at least as big as the sum of the sizes of its members.
8. \qquad In C, functions are uniquely identified by their name, so no two .c files may have functions with the same name.
9. \qquad The string "Frodo LIVES!" requires 12 bytes of memory.
10. \qquad In C, all functions have global scope.

Short Answer

11. (4 points) Write two C statements that assign the value 42 to the 56 th element of an array of integers named ages.
a. \qquad
b. \qquad
12. (4 points) If not used carefully, C library functions for manipulating strings such as strcpy () and strccat () can lead to subtle errors or program termination (segmentation fault). Explain why this is so.
\qquad
\qquad
\qquad
13. ($\mathbf{5}$ points) Give a brief description of what this function accomplishes on the lines provided. DO NOT describe each line of code.
```
void mystery( double *dp, int n)
    {
        int k, N = n - 1;
        for (k = 0; k < n / 2; --N, ++k)
        {
            double temp = *(dp + N);
            *(dp + N) = *(dp + k);
            *(dp + k) = temp;
        }
    }
```

14. (4 points) Examine the code in the boxes, then answer the questions below
```
/** main.c **/
extern int randomInt;
static void printRandoms( int n)
{
    int k;
    for (k = 0; k < n; k++)
    {
        getRandomInt( 12345 ); 
        getRandomInt( 12345 ); 
    }
}
int main( )
{
    printRandoms( 5 );
    return 0;
}
```

```
/** random.c **/
```

/** random.c **/
int randomInt;
int randomInt;
void getRandomInt(int max)
void getRandomInt(int max)
{
{
static long lastRandom = 100001;

```
    static long lastRandom = 100001;
```

a. What is the scope of randomint?
b. What is the lifetime of randomInt?
c. What is the lifetime of lastRandom?
d. What is the scope of lastRandom?
15. ($\mathbf{3 0}$ points - $\mathbf{2}$ points for each blank) Events at a gymnastics meet (high bar, rings, floor exercise, etc) are scored from 0.0 to 10.0 by each of 10 judges. The gymnast's score for the event is calculated by removing the highest and lowest of the judge's scores and then averaging the remaining 8 scores. Fill in the blanks for the functions below that calculate a gymnast's score for an event.

```
#define NR_SCORES 10
/* Calculates and returns a gymnast's score for one event
** from an array of scores provided by the user
** This function calls helper function SumScores( ) and
** GetHiLowScores( ) which are found on the next page */
__ Gymnastics ( float ___)
{
    float eventScore, hiScore, lowScore;
    eventScore = SumScores( scores );
    GetHiLowScores(scores,
```

\qquad

``` ,
``` \(\qquad\)
``` );
```

\qquad
\qquad

```
    eventScore /=
```

\qquad

```
    return eventScore;
}
```

```
/* Continuation from previous page
** Sums the values of an array of gymnasts scores */
_ SumScores( float __ )
{
    float sum = 0;
    int s;
    for (s = 0; s < NR_SCORES; s++)
        sum +=
```

\qquad

```
    return sum;
}
/* "returns" the highest and lowest score via paremeters from an array
** of gymnastic scores which are known to be in the range 0.0 - 10.0 */
```

\qquad

``` GetHiLowScores (float scores[ ],
``` \(\qquad\)
``` hiScore,
``` \(\qquad\)
``` lowScore)
\{
    float hi = -1.0, low = 11.0;
    int s;
    for (s = 0; s < NR_SCORES; s++)
    {
        if ( scores[s] > hi )
                        hi = scores[s];
        if (scores[s] < low )
        low = scores[s];
            }
```

\qquad

``` = hi;
```

\qquad

``` = low;
\}
```

16. (6 points) Convert the following values as indicated
a. Binary 01100101 to hex \qquad
b. Hex 0x2B to decimal \qquad
c. Binary 00110110 to decimal \qquad
17. (4 points) Perform two's complement addition on each pair of 8-bit binary numbers. In each case, indicate whether overflow has occurred.

$$
11010011+01100001=
$$

\qquad Overflow? \qquad
$01100110+10000011=$ \qquad Overflow? \qquad
18. (8 points) Consider a 5-bit two's complement representation. Fill in the empty boxes in the following table. Addition and subtraction should be performed based on the rules for 5-bit, two's complement arithmetic

Number	Decimal Representation	Bit Representation
N / A	-2	
N / A	9	$\mathbf{1 0 0 1 1}$
N / A		$\mathbf{0 1 1 0 0}$
N/A		
TMax		
TMin		

19. ($\mathbf{1 0}$ points) Assuming $\underline{8-b i t}$ integers using two's complement representation, let int \mathbf{A} have the value represented by the bit pattern 01101100 , and unsigned int B have the value represented by the bit pattern 10000110 . Fill in the empty boxes in the table below.

Expression	Value	
$(\mathrm{A} \& 0 \mathrm{xF} 0) \gg 2$		(hex)
$\mathrm{A} \mid 0 \mathrm{x} 3$		(hex)
$\left(\left(\mathrm{A}^{\wedge} \mathrm{B}\right) \ll 3\right) \& \& 0 \times 7$	(decimal)	
$\sim \mathrm{B} \mid \mathrm{B}$	(hex)	
$(\mathrm{A} \& \mathrm{~B}) \gg 2$	(hex)	

20. (5 points) Assuming 32-bit integers using two's complement representation, and given the declarations on the left, determine whether each statement in the table is always true. Circle YES if the statement is always true, circle NO if the statement is not always true.

$\begin{aligned} & \text { int } \mathrm{x}=\mathrm{foo}() ; \\ & \text { int } \mathrm{y}=\operatorname{bar}() ; \end{aligned}$
$\begin{aligned} & \text { unsigned int ux = } x \\ & \text { unsigned in uy }=y \end{aligned}$

Statement	Always True?	
$\mathrm{x}>0 \mathrm{O}=\mathrm{x} * 2>0$	YES	NO
uy >> $3==$ uy / 8	YES	NO
$\mathbf{u x}>=0$	YES	NO
$\begin{aligned} & x \& 7==7 \\ & \Rightarrow(x \ll 30)<0 \end{aligned}$	YES	NO
$\begin{aligned} x>0 \& \& y & >0 \\ =>x+y & >0 \end{aligned}$	YES	NO

