CMSC 203 - Sample Proofs

1 Proof by Mathematical Induction

Prove by mathematical induction that

$$
2^{n} \leq n!
$$

for $n>3$.

PROOF

Basis step. When $n=4,2^{n}=2^{4}=16$, and $n!=4 \cdot 3 \cdot 2 \cdot 1=24$. Therefore, $2^{n} \leq n!$ in the base case.

Inductive step. Suppose that $2^{n} \leq n!$, for some $n>4$. Then $2^{n+1} \leq(n+1)$!.

Proof of inductive step.

$$
2^{n+1}=2 \cdot 2^{n}
$$

$\leq 2 \cdot n!\quad$ By the inductive hypothesis.
$\leq \quad(n+1) \cdot n!\quad$ Since $n>4,2<n+1$.
$=(n+1)!$
Therefore, $2^{n} \leq n$! for all $n>3$.
Q.E.D.

2 Proof by Logical Equivalences

Prove by logical equivalences that

$$
\neg(p \wedge q) \vee \neg(q \wedge r) \Leftrightarrow p \rightarrow \neg(q \wedge r)
$$

PROOF.

$$
\begin{array}{rlll}
\neg(p \wedge q) \vee \neg(q \wedge r) & \Leftrightarrow & \Leftrightarrow \neg p \vee \neg q) \vee(\neg q \vee \neg r) & \\
& \Leftrightarrow \neg p \vee \text { Dy DeMorgan's Law } \\
& \Leftrightarrow \neg \neg \vee \neg r & & \text { By associativity of disjunction } \\
& \Leftrightarrow \neg p \vee \neg(q \wedge r) & & \text { By DeMorgan's Law } \\
& \Leftrightarrow p \rightarrow \neg(q \wedge r) & & \text { By definition of implication }
\end{array}
$$

Q.E.D.

3 Indirect Proof

Prove using an indirect proof that all primes greater than 2 are odd.
PROOF. Suppose that p is an even prime greater than 2. By definition of evenness, $2 \mid p$, i.e., $p=2 n$ for some n, and $n \mid p$. Since $p>2$, n must be greater than 1 . But a prime number is, by definition, only divisible by 1 and itself. Therefore, no even prime greater than 2 can exist.

Q.E.D.

4 Proof by Cases

Prove using an argument by cases that

$$
n \bmod 2 \leq \bmod 4
$$

PROOF. Let $P(n)$ represent for the proposition being proved. Consider four cases: $n \bmod 4=0,1,2,3$.

When $n \bmod 4=0, n \bmod 2=0.0 \leq 0$, so $P(n)$ holds.
When $n \bmod 4=1, n \bmod 2=1.1 \leq 1$, so $P(n)$ holds.
When $n \bmod 4=2, n \bmod 2=0.0 \leq 2$, so $P(n)$ holds.
When $n \bmod 4=3, n \bmod 2=1.1 \leq 3$, so $P(n)$ holds.

Q.E.D.

