CMSC 203 – Sample Proofs

1 Proof by Mathematical Induction

Prove by mathematical induction that

 $2^n \le n!$

for n > 3.

PROOF.

Basis step. When n = 4, $2^n = 2^4 = 16$, and $n! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$. Therefore, $2^n < n!$ in the base case.

Inductive step. Suppose that $2^n \le n!$, for some n > 4. Then $2^{n+1} \le (n+1)!$.

Proof of inductive step.

 $\begin{array}{rcl} 2^{n+1} &=& 2 \cdot 2^n \\ &\leq& 2 \cdot n! & \text{By the inductive hypothesis.} \\ &\leq& (n+1) \cdot n! & \text{Since } n > 4, \ 2 < n+1. \\ &=& (n+1)! \\ \end{array}$ Therefore, $2^n \leq n!$ for all n > 3.

Q.E.D.

2 Proof by Logical Equivalences

Prove by logical equivalences that

$$\neg (p \land q) \lor \neg (q \land r) \Leftrightarrow p \to \neg (q \land r)$$

PROOF.

$\neg (p \land q) \lor \neg (q \land r)$	\Leftrightarrow	$(\neg p \lor \neg q) \lor (\neg q \lor \neg r)$	By DeMorgan's Law
	\Leftrightarrow	$\neg p \vee \neg q \vee \neg r$	By associativity of disjunction
	\Leftrightarrow	$\neg p \lor \neg (q \land r)$	By DeMorgan's Law
	\Leftrightarrow	$p \rightarrow \neg (q \wedge r)$	By definition of implication

Q.E.D.

3 Indirect Proof

Prove using an indirect proof that all primes greater than 2 are odd.

PROOF. Suppose that p is an even prime greater than 2. By definition of evenness, 2|p, i.e., p = 2n for some n, and n|p. Since p > 2, n must be greater than 1. But a prime number is, by definition, only divisible by 1 and itself. Therefore, no even prime greater than 2 can exist.

Q.E.D.

4 Proof by Cases

Prove using an argument by cases that

 $n \ mod \ 2 \leq \ mod \ 4$

PROOF. Let P(n) represent for the proposition being proved. Consider four cases: $n \mod 4 = 0, 1, 2, 3$.

When $n \mod 4 = 0$, $n \mod 2 = 0$. $0 \le 0$, so P(n) holds. When $n \mod 4 = 1$, $n \mod 2 = 1$. $1 \le 1$, so P(n) holds. When $n \mod 4 = 2$, $n \mod 2 = 0$. $0 \le 2$, so P(n) holds. When $n \mod 4 = 3$, $n \mod 2 = 1$. $1 \le 3$, so P(n) holds.

Q.E.D.