Polymorphism 2

CMSC 202

10/26/15

Warmup

What is wrong with the following code?
What error will it produce? (Hint: it already compiles)

for (unsigned int i = 1; i < customers.size(); ++i)
{
for (unsigned int j =i - 1; j >= 0; --3)
{
if (customers.at(j)->GetUsername ()
> customers.at(j+1)->GetUsername())
{
Customer* temp = customers.at(j);
customers.at(j) = customers.at(j+1);

customers.at (j+1) = temp;

Review

Polymorphism
Ability to dynamically decide which method to call

C++
Base class pointer
Derived class object
‘virtual’” keyword
Run-time
Call method on pointer
Runs method of the derived class

What about destructors?

Imagine the following:

class Animal

{

public:
~Animal() ;

}i

class StarFish : public Animal
{
public:
StarFish() ;
~StarFish() ;
void RegrowArm(int i) ;
void LoseArm(int i) ;
private:
Arm* arms;
}i

StarFish::StarFish()
{
arms = new Arm[5];

}

StarFish::~StarFish()
{
delete [] arms; _ _ _ _ _ _ -
arms = NULL; Toh Not Only
} Van Animal is 1
| destroyedty
int main()
{

Animal* a = new StarFish();

I what !
delete a; «—1 happens !
a = NULL; I here? :

[SR

10/26/15

Virtual Destructors

Remember

Static binding means that we call the POINTER’ s

method

Dynamic binding means that we call the OBJECT’ s

method

Requires the ‘virtual’ keyword

Rule of thumb?

If a class has one or more virtual method — give it a

virtual destructor!

Expect this class to be a base class, eventually

Let’ s rewrite that class...

Virtual Destructors

Imagine the following:

class Animal
{
public:

virtual ~Animal();
}i

class StarFish : public Animal
{
public:
StarFish() ;
~StarFish() ;
void RegrowArm(int i) ;
void LoseArm(int i) ;
private:
Arm* arms;
}i

StarFish: :StarFish()
{
arms = new Arm[5];

}

StarFish::~StarFish()
{

delete [l arms; | pynamic
arms = NULL; I binding - a

} I StarFish is
I destroyed!!!

int main()
{

Animal* a = new StarFish();

I what !
delete a; «—1 happens !
a = NULL; I here? :

[P

Designing Inheritance

For Base Class

Methods
Identify common operations of ALL derived classes
Identify which are type-dependent

These are (pure) virtual and will be overridden

Identify access level for each method

Data Members
Identify common data of ALL derived classes
Identify access level for each data member

10/26/15

Aggregation Problem?

class Zoo
{
public:
Zoo (const Zoo& zoo) ;
private:
vector<Animal*> animals;

}i

Zoo: :Zoo (const Zoo& zoo)

{

for (unsigned i = 0; i < zoo.animals.size(); ++i)
{

animals.push back ()i

}

Aggregation Solution
Clone()

Define a virtual method named Clone()

Returns a pointer to current type

Override in derived classes

Might be pure virtual in base class
Example:

virtual Animal* Clone() const = 0;

virtual Lion* Clone();

Revised Animal Hierarchy

class Animal
{
public:
virtual ~Animal();
virtual Animal* Clone() const = 0;

}i

StarFish* StarFish::Clone() const

class StarFish : public Animal i

{ return new StarFish(*this);

public:)
StarFish(const Starfishs s);
StarFish* Clone() const;

}i

Lion* Lion::Clone() const

class Lion : public Animal

{

public:)
Lion(const Lions 1);

{

Lion* Clone() const;

return new Lion(*this);

10/26/15

Revised Zoo

class Zoo
{
public:
Zoo (const Zoo& zoo) ;
private:
vector<Animal*> animals;
}i
Zoo: :Zoo (const Zoo& zoo)
{
for (unsigned i = 0; i < zoo.animals.size(); ++i)
{
animals.push _back(zoo.animals.at(i)->Clone());
}
}
Inheritance in Real Life
Vehicles

Sports

Entertainment Products
Computers

Music

Writing Utensils oo oo

r Basically - anything

Food . that you can classify
into a set of categories

Restaurants]
Data Structures 1

or hierarchy of
categories!

Challenge

Pick an object from the world around you
Define an inheritance hierarchy for that item

Demonstrate the use of virtual destructors in
your hierarchy

Demonstrate cloning in your hierarchy

10/26/15

