
10/21/15

1

Inheritance

CMSC 202

Warmup
Identify which constructor each of the

following use (default, non-default, copy)

MyClass a;
MyClass b(a);
MyClass c(2);
MyClass* d = new MyClass;
MyClass* e = new MyClass(*d);
MyClass* f = new MyClass(4);

Code Reuse
How have we seen Code Reuse so far?

Functions
Function Libraries

Ex: math -> pow, sqrt

Classes
Class Libraries

Ex: vector, string

Aggregation
Customer “has-a” DVD
RentalSystem “has-a” Customer

10/21/15

2

Object Relationships
“Uses a”

Object_A “uses a” Object_B
Ex: Student sits in a chair

“Has a”
Object_A “has a” Object_B

Ex: Student has a name

“Is a” or “Is a kind of”
Object_A “is a” Object_B

Ex: Student is a kind of Person

Inheritance
What is Inheritance?

Unfortunately – not what your parents/grandparents will be
giving you…

Inheritance
“is a” or “is a kind of” relationship
Code reuse by sharing related methods
Specific classes “inherit” methods from general classes

Examples
A student is a person
A professor is a faculty member
A lecturer is a faculty member

Inheritance Hierarchy

10/21/15

3

Why Inheritance?
Abstraction for sharing similarities while retaining

differences
Group classes into related families

Share common operations and data
Multiple inheritance is possible

Inherit from multiple base classes
Not advisable

Promotes code reuse
Design general class once

Extend implementation through inheritance

Inheritance and Classes
Base class (or superclass)

More general class
Contains common data
Contains common operations

Derived class (or subclass)
More specific class
Inherits data from Base class
Inherits operations from Base class
Uses, modifies, extends, or replaces Base class behaviors

Inheritance Example

University Member

Name
Address

Faculty

Area of Research

Advisees

Student

Major
GPA

10/21/15

4

Inheritance

Assume the hierarchy on
the right…

A is Base class
B is derived class
B derives from A

Every B is an A
Every A is NOT a B
Some A’s are B’s

Class A

Class B

A objects

 B objects

Inheritance

Assume the hierarchy on the
right…

Everywhere an A can be used,
a B can be used

Parameters
Return values
Items in vectors
Items in arrays

Reverse is not true…

Inheritance so far?
ifstream is an istream
ofstream is an ostream

istream

ifstream

istream objects

ifstream
objects

Trip to the Zoo
Animal
eat()

sleep()
reproduce()

Mammal
giveBirth()

Reptile
layEggs()

Lion
roar()

Dolphin
doTrick()

Rattlesnake
rattle()

Gecko
loseTail()

10/21/15

5

Inheritance
class BaseClass
{

public:
// operations

private:
// data

};

class DerivedClass : public BaseClass
{

public:
// operations

private:
// data

};

Indicates that
this derived

class inherits
data and

operations
from this base

class

Inheritance in Action
class Animal
{ };

class Mammal : public Animal
{ };

class Lion : public Mammal
{ };

class Dolphin : public Mammal
{ };

class Reptile : public Animal

{ };

class Gecko : public Reptile

{ };

class Rattlesnake : public Reptile
{ };

Animal
eat()

sleep()
reproduce()

Mammal
giveBirth()

Reptile
layEggs()

Lion
roar()

Dolphin
doTrick()

Rattlesnake
rattle()

Gecko
loseTail()

Inherited Functionality
Derived class

Has access to all public methods of base class
“Owns” these public methods

Can be used on derived class objects!

BaseClass b;
b.BaseClassMethod();
b.DerivedClassMethod();

DerivedClass d;
d.BaseClassMethod();
d.DerivedClassMethod();

10/21/15

6

Protection Mechanism
Public

Anything can access these methods/data
Private

Only this class can access these methods/data
Protected

Only derived classes (and this class) can access
these methods/data

Trip to the Zoo
class Animal

{

public:

void Print() { cout << “Hi, my name is” << m_name; }

protected:

string m_name;

};

class Lion : public Animal

{

public:

Lion(string name) { m_name = name; }

};

void main()

{

Lion lion(“Fred”);

lion.Print();

}

Animal

Lion

Hi, my name is Fred

Constructors and Destructors

Constructors
Not inherited
Base class constructor is called before Derived class

constructor
Use initializer-list to call non-default base-class constructor
Similar for copy constructor

Destructors
Not inherited

Derived class destructor is called before Base class
We’ll look more carefully at these next week

10/21/15

7

Constructor and Destructor
class Animal

{

public:

Animal() { cout << “Base constructor” << endl; }
~Animal() { cout << “Base destructor” << endl; }

};

class Lion : public Animal

{

public:

Lion() { cout << “Derived constructor” << endl; }
~Lion() { cout << “Derived destructor” << endl; }

};

int main()

{

Lion lion;
return 0;

}

Will print:

Base constructor

Derived constructor

Derived destructor

Base destructor

Non-default Constructor
class Animal
{
public:

Animal(string name) { m_name = name; }
protected:

string m_name;
};

class Lion : public Animal
{
public:

Lion(string name) : Animal(name) { }
};

What’s
going on

here?

operator=
operator=

Not inherited
Well, at least not exactly

Need to override this!
Can do:

Base base1 = base2;
Base base1 = derived1;

Cannot do:
Derived derived1 = base1;

Why won’t this work??

10/21/15

8

Operator=
class Animal

{

public:

Animal(string name)
 { m_name = name; }

Animal& operator=(Animal& a)
 { m_name = a.m_name; }

protected:
string m_name;

};

class Lion : public Animal

{

public:

Lion(string name)
 : Animal(name) { }

};

int main()
{

Lion lion(“Fred”);
Animal animal1(“John”);
Animal animal2(“Sue”);

animal1 = animal2;
animal2 = lion;

lion = animal1;

 // Uh Oh!!!

return 0;

} Compiler looks for
an operator= that
takes a Lion on

the left-hand side
– doesn’t find

one!!!

Method Overriding
Overriding

Use exact same signature
Derived class method can

Modify, add to, or replace base class method
Derived method will be called for derived objects
Base method will be called for base objects
Pointers are special cases

More on this next week!

Method Overriding
class Animal

{

public:

void Eat() { cout << “I eat stuff” << endl; }

};

class Lion : public Animal

{

public:

void Eat() { cout << “I eat meat” << endl; }

};

void main()

{

Lion lion;

lion.Eat();

Animal animal;

animal.Eat();

}

I eat meat

I eat stuff

10/21/15

9

Method Overloading
Overloading

Use different signatures
Derived class has access to both…
Not usually thought of as an inheritance topic
Pointers are tricky

More on this next week!

Method Overloading
class Animal

{

public:

void Eat() { cout << “I eat stuff” << endl; }

};

class Lion : public Animal

{

public:

void Eat(string food) { cout << “I ate a(n) ” << food << endl; }

};

void main()

{

Lion lion;

lion.Eat(“steak”);

lion.Eat();

}

I ate a(n) steak

I eat stuff

Challenge
Complete the Giraffe and Mammal classes

Implement at least one overloaded method
Implement at least one protected data member
Implement a constructor
Implement a destructor
Implement a non-default constructor

