Testing

CMSC 202



Overview

What is software testing?
What is unit testing?
Why/When to test?

Intro to JUnit

What makes a good test?
What to test?




What is Software Testing?

e Software testing is any activity aimed at
evaluating an attribute or capability of a
program or system and determining that it
meets its required results

— William Hetzel
“The Complete Guide to Software Testing”



Types of Software Testing

Unit Testing

— Verifies the functionality of a specific chunk of
code, usually at the function/class level

Integration Testing

— Testing of combined modules as a whole

System Testing

— Tests fully integrated system against requirements

System Integration Testing
— Testing between multiple systems



Unit Testing

 Aunit testis a piece of code written by a
developer that exercises a very small, specific
area of functionality in the code being tested

e Usually a unit test exercises some particular
method in a particular context

— Andy Hunt & Dave Thomas
“Pragmatic Unit Testing”



Unit Testing

* Also known as component testing

* In OOP, typically ensures that method/class
works as designed

 Written by developers to test their code
— Also known as white box testing



Why Test?

* You wouldn’t do this without a safety net
 Why develop your code without one?



When to Test?

* How many of you write almost all of your
code and then write some tests...

— To fulfill project requirements?

— To exercise and test your code?

* How many of you incrementally write tests to
exercise code as your write it?

* Anyone write the tests first?



Pay Now or Pay Later

PAY-AS-YOU-GO

Productivity —

|
Time —

* |t’s cheaper in the long run to “pay as you go’

Productivity —

SINGLE TEST PHASE

Time > \

/’

* Minimizes trying to solve many problems at
once at the end of your development cycle



Test Driven Development

* Test Driven Development (TDD) takes this “pay
early” approach a step further by requiring that
you write the tests before writing non-test code...

Add test

Run tests, new tests should fail

Write code to satisfy tests

Re-run tests, all tests should pass

Refactor as needed

o Uk wh e

Repeat



Unit Testing with JUnit

e JUnit is a widely used unit testing framework
for Java written by Erich Gamma & Kent Beck

* JUnit support is integrated into many popular
Java IDEs including Eclipse and NetBeans

* |nstead of testing a code in its main, we’re
going to create special JUnit aware classes to
test our classes



Test Folder

New Source Folder

* To keep things tidy, ece
let’s create a e s m st e
separate source
folder to house the =« =

JUnit test classes

* To do so, right click
in package explorer
and select New -
Source Folder and
name it “test”

"] Update exclusion filters in other

source folders to solve nesting




Creating a JUnlt Test

* To create a
new JUnit test
in Eclipse, first
select the test
folder, then...

File > New >
JUnit Test Case

New JUnit Test Case

JUnit Test Case

Select the name of the new JUnit test case. You have the options to specify
the class under test and on the next page, to select methods to be tested.

() New JUnit 3 test (® New JUnit 4 test

Source folder: testing/test Browse...
Package: testing Browse...
Name: TestMath
Superclass: java.lang.Object Browse..
Which method stubs would you like to create?

(] setUpBeforeClass() [_| tearDownAfterClass()

(] setUp() [ tearDown()

constructor

Do you want to add comments? (Configure templates and default value here)

(] Generate comments
Class under test: Browse...
(?) < Back Next > (" cancel ) £ Finish

)

13



Adding JUnit to the Classpath

* |f you're adding your first test case, Eclipse will
automatically allow you to add the library to
the classpath...

(] O New JUnit Test Case

1 JUnit 4 is not on the build path. Do you want to add it?

() Open the build path property page
® perform the following action:

=, Add JUnit 4 library to the build path




@Test Annotation

* Test methods are identified by the @Test
annotation before the method declaration

@Test
public void someTestMethod() { }

e This tells JUnit that the method should be
executed as a test case

* Touse @Test, you’'ll need to import Test...

import org.junit.Test;



JUnit Assert Class

* The Assert class is the primary mechanism for
identifying success/failures in JUnit

* |t provides many static methods that are used
to test various conditions

* To utilize the class, you’ll need to import...

import org.junit.Assert;



JUnit Assert Class Methods

* Methods for verifying trueness/falseness...

public static void assertTrue(boolean condition);
public static void assertFalse(boolean condition);

* Methods for testing nullness/non-nullness...

public static void assertNotNull(Object object);
public static void assertNull(Object object);

17



JUnit Assert Class Methods

* Checking objects, integer types (byte, char,
int, long) and floating point types (float,
double) for equality...

public static void assertEquals(Object expected,
Object actual);

public static void assertEquals(integer_types expected,
integer_types actual);

public static void assertEquals(float_types expected,
float_types actual,
float_types delta);

18



JUnit Assert Class Methods

* Methods for comparing arrays of elements for
equality...
public static void assertArrayEquals(integer_typel[] expecteds,
integer_typel[] actuals);

public static void assertArrayEquals(Object[] expecteds,
Object[] actuals);

e See the javadocs for a complete listing...
— http://junit.sourceforge.net/javadoc/org/junit/Assert.html

19



Testing Java’s Math Class

package testing;

import org.junit.Assert;
import org.junit.Test;

public class TestMath {
@Test
public void testPI() {
Assert.assertEquals(3.1415, Math.PI, .0001);
¥

@Test

public void testMax() {
Assert.assertEquals(16, Math.max(5, 16));

I3

@Test

public void testThatShouldFail() {
Assert.assertEquals(16, Math.min(5, 16));

}

} 20



Running a Test

* Torun a test in Eclipse simply right click and
select Run As = JUnit Test

* Note that your class doesn’t have a main, this

is actually okay, as JUnit is doing some magic
behind the scenes...

— Basically it’s finding all methods that have a @Test

annotation and runs each of them independently
and records the Assert result




The JUnit View

* TheJUnit view shows allof ™" es -
the tests as executed by S e DR

. ]
J U n I t "% testing.TestMath [Runner: JUnit 4] (0.000 s)

¢ testPl (0.000 s)
FEjtestMax (0.000 s)

- Errors indicate Something g testThatShouldFail (0.000 s)
went wrong during the test
(e.g. exception)

— Failures are a result of a
failing assert statement

* Errors and/or failures
indicate an issues with the

test or a problem (bug) in
the code



Properties of Good Unit Tests

* Now that we know how to write a basic test, what are
things we aim for in good tests?

— Repeatable

* Should be able to be re-run producing the same results (avoid
randomness, getting current time, etc.)

— Independent
* Only test one feature (method) at a time (per JUnit test method)
* Tests should not be dependent upon one another
— Provide Value
* Testing simple getters/setters is probably not a good use of time
— Thorough

* Tests all class invariants, pre/post conditions, edge cases



Thoroughness

* |n order for your tests to be thorough, you
need to check for several things...

— General Correctness
— Boundary Conditions
— Error Conditions



General Correctness

* These are the so-called easy tests to write

III

* These test the “general” cases



Boundary Conditions

Ordering

— Does various ordering affect the outcome?

Range

— zero, minimum, maximum, positive #s, negative #s
Existence

— Null values for reference parameters?
— Empty things...
e Collections (e.g. Arrays)
* Strings
Cardinality
— Expected number of items?



Error Conditions

* Are the right exceptions getting raised under
the right conditions?
* |/Oissues...
— Missing files
— Unreadable files
— Empty files



Testing for Exceptions in JUnit

* You can create a test that checks that an
exception is thrown by modifying the @Test
attribute as so...

@Test(expected=SomeException.class)

public void testThatRaisesException() {
// foo should throw an exception if arg 1s negative
SomeObject.foo(-1);

}

28



Running a Suite of Tests

* |deally you’'d have test classes corresponding
to most (if not all) of your classes

e Rather than running each test separately you
can run a whole suite of tests like so...

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith(Suite.class)
@Suite.SuiteClasses({
TestFoo.class,
TestBar.class,

TestBaz.class

)
public class RunAllTests { }



Exercise

* |dentify test cases for the following method...

public static int largest(int[] list) { }

* What tests might we have for each of the
following areas?
— General Correctness
— Boundary Conditions
— Error Conditions



A Buggy Implementation

* How many of your tests failed on the
following buggy implementation of largest?

public static int largest(int[] list) {
int max = Integer.MAX_VALUE;
for(int i = 0; i < list.length - 1; i++) {
if(list[i] > max) {
max = list[il];
I3
5

return max;



General Correctness

@Test

public void testlLargestInMiddle() {
int[] array = new int[] {1, 2, 5, 3, 4};
Assert.assertEquals(5, Statistics.largest(array));

}

32



Ordering

@Test

public void testLargestAtBack() {
int[] array = new int[] {1, 2, 3, 4, 5};
Assert.assertEquals(5, Statistics.largest(array));

}

@Test

public void testlLargestAtFront() {
int[] array = new int[] {5, 4, 3, 2, 1};
Assert.assertEquals(5, Statistics.largest(array));

33



Range

@Test

public void testLargestNegativeNumbers() A{
int[] array = new int[] {-1, -2, -3, -4, -5};
Assert.assertEquals(-1, Statistics.largest(array));

}

@Test

void testLargestAcrossZero() {
int[] array = new int[] {-2, 2, 0, -1, 1};
Assert.assertEquals(2, Statistics.largest(array));

}

@Test
void testLargestBigNumbers() {
int[] array = new int[] { Integer.MAX_VALUE - 2,

Integer.MIN_VALUE, Integer.MAX_VALUE, 0 };
Assert.assertEquals(Integer.MAX_VALUE, Statistics.largest(array));

34



Existence/Error Conditions

@Test(expected=I1legalArgumentException.class)
public void testNullList() {

int[] array = null;
Assert.assertEquals(-1, Statistics.largest(array));

}

@Test(expected=I1legalArgumentException.class)

public void testEmptyList() {
int[] array = new int[] { };
Assert.assertEquals(-1, Statistics.largest(array));

}

35



A Much Improved largest Method

public static int largest(int[] list) {
if(list == null) {
throw new IllegalArgumentException("1list cannot be null");
} else if (list.length == 0) {
throw new IllegalArgumentException("list cannot be empty");

}

int max = Integer.MIN_VALUE;
for(int i = 0; i < list.length; i++) {
if(list[i] > max) {
max = list[i];
}
}

return max;

36



Additional Resources

* Pragmatic Unit Testing in Java with JUnit
— Free Introduction chapter

— Free testing Summary cheat-sheet

 JUnit Test Infected: Programmers Love Writing
Tests

37



