
Inheritance II

CMSC 202

Protected Access
l  If a method or instance variable is modified by protected (rather than
public or private), then it can be accessed by name
l  Inside its own class definition
l  Inside any class derived from it
l  In the definition of any class in the same package

l  The protected modifier provides very weak protection compared to
the private modifier
l  It allows direct access to any programmer who defines a suitable

derived class
l  Therefore, instance variables should normally not be marked

protected

2

Protected Members

l  Derived classes can directly access inherited
protected class members.

public class Vehicle {

 protected int speed;
}

public class Automobile extends Vehicle {
 // class definition

 public void applyEmergencyBrake(){
 speed = 0;
 }

 public static void main(String[] args){
 Automobile hummer = new Automobile("GMC","Hummer");

 hummer.speed = 100;

 }
}

Direct access to a base
Class' instance variable

3
Problem: Public access to an instance

variable of vehicle

Package Access

l  If you don’t explicitly specify an access control
modifier, Java defaults to package access
l  Also known a “package-private” or “default”

l  Package visibility modifiers imply access rights
that are unique to package
l  All classes within the same package can access

protected members as if they are public.
l  This may or may not be a problem...

4

Access Levels

Modifier Same Class Same Package Subclass World

public ✔ ✔ ✔ ✔
protected ✔ ✔ ✔ ✘
no modifier ✔ ✔ ✘ ✘
private ✔ ✘ ✘ ✘

5

Visibility of Alpha’s Members

6

Modifier From within
Alpha

From within
AlphaSub

From within
Beta

From within
Gamma

public ✔ ✔ ✔ ✔
protected ✔ ✔ ✔ ✘
no modifier ✔ ✘ ✔ ✘
private ✔ ✘ ✘ ✘

Inherited Constructors?

A Vehicle constructor cannot be used to create
Automobile objects. Why not?

We must implement a specialized constructor for

Automobile. But how can the Automobile
constructor initialize the private instance
variables in the Vehicle class since it doesn’t
have direct access?

7

The super Constructor

l  A derived class uses a constructor from the base class to
initialize all the data inherited from the base class
l  In order to invoke a constructor from the base class, it uses

a special syntax:
 public DerivedClass(int p1, int p2, double p3)
 {
 super(p1, p2);
 derivedClassInstanceVariable = p3;
 }

l  In the above example, super(p1, p2); is a call to the
base class constructor

8

The super Constructor

l  Calling the base class' constructor uses the keyword
super()

l  A call to super must always be the first action taken in a

constructor definition

l  An instance variable cannot be used as an argument to
super. Why not?

9

The super Constructor

l  If a derived class constructor does not include an
invocation of super, then the no-argument constructor of
the base class will automatically be invoked
l  This can result in an error if the base class has not defined a no-

argument constructor
l  Since the inherited instance variables should be

initialized, and the base class constructor is designed to
do that, then an explicit call to super should always be
used.

10

Vehicle Constructor
public class Vehicle {

 protected int speed;

 private int vin;
 private Color color;
 private int numOperators;
 private int numPassangers;

 private static int serialNumber = 111111;

 public Vehicle(){
 this(Color.blue, 1);
 }

 public Vehicle(Color cc, int numOperators) {
 vin = serialNumber++;
 color = cc;
 this.numOperators = numOperators;
 numPassengers = 0;
 }
} 11

Automobile Constructor
public class Automobile extends Vehicle {
 // instance variables local to the derived class extends
 private String make;
 private String model;
 private boolean locked;

 // note we have not taken care to implement any class
 // invariant checking however, each class should validate
 // its own state
 public Automobile(String make, String model, Color color,

 int numOperators) {
 // calling which constructor of vehicle?

 super(color, numOperators);

 this.make = make;
 this.model = model;
 this.locked = false;
 }

 public Automobile() {
 this("Mazda","CX-9", Color.RED, 1);
 }
} 12

Access to a Redefined Base Method
l  Within the definition of a method of a derived class, the

base class version of an overridden method of the base
class can still be invoked
l  Simply preface the method name with super and a dot

// Automobile's toString() might be
public String toString()
{
 return (super.toString() + "$" + getRate());
}

l  However, using an object of the derived class outside of its
class definition, there is no way to invoke the base class
version of an overridden method

13

You Cannot Use Multiple supers
l  It is only valid to use super to invoke a method from a

direct parent
l  Repeating super will not invoke a method from some other

ancestor class
l  For example, if the Helicopter class were derived from

the class Aircraft, and the Aircraft class were derived
form the class Vehicle , it would not be possible to invoke
the toString method of the Vehicle class within a
method of the Helicopter class
l  You must use composition to accomplish that task.

super.super.toString() // ILLEGAL!

14

An Object of a Derived Class
Has More than One Type

l  An object of a derived class has the type of the derived
class, and it also has the type of the base class

l  More generally, an object of a derived class has the type

of every one of its ancestor classes
l  Therefore, an object of a derived class can be assigned to a

variable of any ancestor type

15

An Object of a Derived Class
Has More than One Type

l  An object of a derived class can be plugged in as a
parameter in place of any of its ancestor classes

l  In fact, a derived class object can be used anyplace that
an object of any of its ancestor types can be used

l  Note, however, that this relationship does not go the other
way
l  An ancestor type can never be used in place of one of its derived

types

16

Base/Derived Class Summary

Assume that class D (Derived) is derived from class B (Base).
1.  Every object of type D is a B, but not vice versa.

2.  D is a more specialized version of B.

3.  Anywhere an object of type B can be used, an object of type D can

be used just as well, but not vice versa.

(Adapted from: Effective C++, 2nd edition, pg. 155)

17

Tip: Static Variables Are Inherited

l  Static variables in a base class are inherited
by any of its derived classes

l  The modifiers public, private, and
protected have the same meaning for static
variables as they do for instance variables

18

The Class Object

l  In Java, every class is a descendent of the class Object
l  Every class has Object as its ancestor
l  Every object of every class is of type Object, as well as being

of the type of its own class
l  If a class is defined that is not explicitly a derived class of

another class, it is still automatically a derived class of the
class Object

19

The Class Object

The class Object is in the package java.lang which
is always imported automatically

Having an Object class enables methods to be written
with a parameter of type Object
A parameter of type Object can be replaced by an object of

any class whatsoever
For example, some library methods accept an argument of type
Object so they can be used with an argument that is an
object of any class

20

The Class Object
The class Object has some methods that every Java class inherits

For example, the equals and toString methods

Every object inherits these methods from some ancestor class
Either the class Object itself, or a class that itself inherited these

methods (ultimately) from the class Object

However, these inherited methods should be overridden with
definitions more appropriate to a given class
Some Java library classes assume that every class has its own

version of such methods

21

The Right Way to Define equals

l  Since the equals method is always inherited from the
class Object, methods like the following simply overload
it:
public boolean equals(Vehicle otherVehicle)
 { . . . }

l  However, this method should be overridden, not just
overloaded:
public boolean equals(Object otherObject)
 { . . . }

22

The Right Way to Define equals

l  The overridden version of equals must meet the
following conditions
l  The parameter otherObject of type Object must be type cast

to the given class (e.g., Vehicle)

l  However, the new method should only do this if otherObject

really is an object of that class, and if otherObject is not equal
to null

l  Finally, it should compare each of the instance variables of both

objects

23

A Better Vehicle Class Equals()
 public boolean equals(Object otherObject){
 if(otherObject == null){
 return false;
 }
 if(otherObject.getClass() != this.getClass()){
 return false;
 }
 // Downcast so that we can access the instance variables
 // and methods of the Vehicle Class
 Vehicle v = (Vehicle) otherObject;
 if(v.vin == this.vin){
 return true;
 }
 else{
 return false;
 }
 }

Prevent null pointer exception

Prevent class mismatch exception

Finally check to see if the two vehicles are the
Same vehicle based on the state of each

instance.

24

The getClass() Method
l  Every object inherits the same getClass() method from

the Object class
l  This method is marked final, so it cannot be overridden

l  An invocation of getClass() on an object returns a
representation only of the class that was used with new to
create the object
l  The results of any two such invocations can be compared with
== or != to determine whether or not they represent the exact
same class

(object1.getClass() == object2.getClass())

25

