
CMSC 202

Generics II

Generic Sorting
We can now implement sorting functions that can be used for any class (that implements

Comparable). The familiar insertion sort is shown below.

public static <T extends Comparable<T>> !
void insertionSort(T[] array) { !
!

"for (int i = 1; i < array.length; i++) { !
" "int j = i; !
" "T item = array[i]; !
" "while ((j > 0) && (array[j - 1].compareTo(item) > 0)) {!
" " "array[j] = array[j - 1]; !
" " "j--; !
" "} !
" "array[j] = item; !
"} !

}

Generics and Hierarchies

l  What if we want a somewhat specialized container that
assumes the objects it holds are part of a hierarchy so
that the container code can assume the existence of a
particular method? Let’s look at Animals, Dogs, and Cats

class Animal { public void speak(){...} ... }
class Dog extends Animal {...}
class Cat extends Animal {...}

We would like to create a container named Zoo to hold some animals that speak.

Zoo<T>

l  If we define the Zoo like this
 public class Zoo< T >

we’ll get a compiler error when we try to invoke
the speak() method. Not all classes provide a
method called speak(). Only Animals provide
speak().

The solution is to place a bounds on T. The Zoo
can only contain Animals or any type that
inherits from Animal.
 public class Zoo< T extends Animal >

The phrase T extends Animal means “Animal or any subtype of
Animal”

Generics and Hierarchy

For example, suppose we revisit the Animals.
Each animal has a weight and a name. Let’s say two Dogs (or two

Cats) are the equal if they have the same name and weight.

class Animal { private String name; private int weight; ...}
class Dog extends Animal implements Comparable<Dog>{ ... }
class Cat extends Animal implements Comparable<Cat>{ ... }

Since Dog implements comparable<Dog> it’s clear you can compare Dogs with Dogs,
but not with Cats

We can use our insertionSort method with Dogs or with Cats

Sorting Dogs
public void main(String[] args){
 Dog[] dogs = new Dog[42];

 // put some dogs in the array
 // ..

 // use insertion sort to sort dogs
 MyClass.insertionSort(dogs);
}

Generics and Hierarchies
What happens if we want to sort a class in an inheritance

hierarchy, but some ancestor of the class implements
comparable, and not the class itself?

But suppose we wanted compare all Animals using only their
weight. The class definitions would look something like this

class Animal implements Comparable<Animal> { ...}
class Dog extends Animal { ... }
class Cat extends Animal { ... }

Since Animal implements comparable, any two Animals can be compared
(albeit only by weight).

The problem is now that we can’t use insertionSort to sort an array of Dogs
because Dog doesn’t explicitly implement Comparable (it’s inherited
from Animal)

New insertionSort
The solution is to use a “wildcard” when defining insertionSort

? super T is read as “any supertype of T”. Now, because Dog extends Animal

which implements Comparable, insertionSort can be used with an array of Dogs
as before.

public static <T extends Comparable<? super T>> !
void insertionSort(T[] array){ !
 for (int i = 1; i < array.length; i++){ !
 int j = i; !
 T B = array[i]; !
 while ((j > 0) && (array[j-1].compareTo(B) > 0)){ !
 array[j] = array[j-1]; !
 j--; !
 } !
 array[j] = B; !
 } !
}

Pitfall: A Generic Class Cannot Be an Exception
Class

l  It is not permitted to create a generic class
with Exception, Error, Throwable, or any
descendent class of Throwable
l  A generic class cannot be created whose objects

are throwable
public class GEx<T> extends Exception

l  The above example will generate a compiler error
message

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	

	
 All	
 rights	
 reserved	

Tip: Generic Interfaces

l  An interface can have one or more type
parameters

l  The details and notation are the same as they
are for classes with type parameters

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

Generic Methods
l  When a generic class is defined, the type parameter can

be used in the definitions of the methods for that generic
class

l  In addition, a generic method can be defined that has its
own type parameter that is not the type parameter of any
class
l  A generic method can be a member of an ordinary class or a

member of a generic class that has some other type parameter
l  The type parameter of a generic method is local to that method,

not to the class

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

Generic Methods
l  The type parameter must be placed (in angular brackets)

after all the modifiers, and before the returned type

public class Utility {

...
 public static <T> T getMidPoint(T[] array)
 { return array[array.length / 2]; }

 public static <T> T getFirst(T[] a)

 { return a[0]; }
 ...

}

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

Generic Methods

l  When one of these generic methods is invoked,
the method name is prefaced with the type to be
plugged in, enclosed in angular brackets
String s =

 Utility.<String>getMidPoint(arrayOfStrings);
double first = Utility.<Double>getFirst
(arrayOfDoubles);

Inheritance with Generic Classes
l  A generic class can be defined as a derived class of an

ordinary class or of another generic class
l  As in ordinary classes, an object of the subclass type would also

be of the superclass type

l  Given two classes: A and B, and given G: a generic class,
there is no relationship between G<A> and G
l  This is true regardless of the relationship between class A and B,

e.g., if class B is a subclass of class A

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

The Commonly Used Generic Ordered
Pair Class (1 of 4)

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

A Generic Ordered Pair Class (2 of
4)

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	

	
 All	
 rights	
 reserved	

A Generic Ordered Pair Class (3 of
4)

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

A Generic Ordered Pair Class (4 of
4)

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

A Derived Generic Class (1 of 2)

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

In this example UnorderedPair overrides equals() that was inherited from Pair

A Derived Generic Class (Part 2 of
2)

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

Using UnorderedPair (Part 1 of 2)

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

Using UnorderedPair (Part 2 of 2)

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

