Intro to Enums

CMSC 202



Enumerated Values

* An enumerated values are used to represent a
set of named values

* Historically in Java (and other languages),
these were often stored as integers

* For example, in Java...

public
public
public
public

static
static
static
static

final
final
final
final

int SUIT CLUBS = 0;
int SUIT _DIAMONDS
int SUIT_HEARTS
int SUIT _SPADES

W Nl



Issues with this Approach

* There are however, a number of issues with
this approach...

— Acceptable values not obvious
— No type safety

— No name-spacing

— Not printable



Acceptable Values Not Obvious

* Since the values are just integers, it’s hard at a
glance to tell what the possible values are

* Take this method from swing’s JLabel class...

public void setHorizontalAlignment(int alignment) {
/% wua X/
I3

* Any clue what are valid values for the alignment
parameter?

— Have to resort to reading the docs



No Type Safety

* Since the values are just integers, the compiler
will let you substitute any valid integer

 For example, there’s nothing stopping me from

passing in 1, -3, or 438523423 into the following
method...

public void drawSuitOnCard(int suit) {
/% ou. X/
I3

* There’s no way to constrain to only “suit” ints



No Nam

e-Spacing

* With our card example, we prefixed each of the

suits with “SUIT ”

* We chose to prefix all of those constants with
this prefix to potentially disambiguate from other
enumerated values of the same class

 For example, had we c
the card faces (e.g. Jac
want to make it clear t
the card faces

— For example, we might

nosen to also enumerate
K, Queen, ...) we would

nat they were representing

have “FACE_ACE”



Not Printable

* Since they are just integers, if we were to
print out the values, they'd simply display
their numerical value

e Similar problem as when reading the method
parameters

— Need to consult the docs to decipher values



Enums to the Rescue

e Java 5 added an enum type to the language

* Declared using the enum keyword instead of
class

* |n its simplest form it contains a comma
separated list of names representing each of
the possible options...

public enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }



Enums Address These Issues

* Acceptable values are now obvious — must
choose one of the Suit enumerated values...

drawSuitOnCard(Suit.|)
o° CLUBS : Test.Suit - Test.Suit
o° DIAMONDS : Test.Suit - Test.Suit W
0% HEARTS : Test.Suit - Test.Suit
o° SPADES : Test.Suit - Test.Suit
@ valueOf(String arg0) : Suit - Suit
’ Press '~Space’ to show Template Propos

* Type safety — possible values are enforced by
the compiler...

£ The method drawSuitOnCard(Test.Suit) in the type Test is not applicable for the arguments (int)
2 quick fixes available:

@ Change method 'drawSuitOnCard(Suit)' to 'drawSuitOnCard(int)'

@m Create method 'drawSuitOnCard(int)’'




Enums Address These Issues

* Every value is name-spaced off of the enum
type itself...

° CLUBS : Test.Suit - Test.Suit
o° DIAMONDS : Test.Suit - Test.Suit )
o° HEARTS : Test.Suit - Test.Suit

o° SPADES : Test.Suit - Test.Suit

@ valueOf(String arg0) : Suit - Suit

Press "~Space’ to show Template Propos

* Printing the enum value is actually readable...

System.out.print("Card is a Queen of " + Suit.HEARTS);
// Prints "Card is a Queen of HEARTS"

10



Additional Benefits

e Storage of additional information
e Retrieval of all enumerated values of a type
e Comparison of enumerated values



Storage of Additional Information

* Enums are objects

e So they can have...

— Members
— Methods

* For example...

— We could embed the
color of the suit within
the Suit

— We can then read the

value using a getter, etc.

public enum Suit {

}

CLUBS(Color.BLACK),
DIAMONDS (Color.RED),
HEARTS (Color.RED),

SPADES (Color.BLACK);

private Color color;

// Java will prevent construction
// outside of enum declaration
Suit(Color c) £

this.color = c;

+
public Color getColor() {

return this.color;

}

12



Retrieval of All Enumerated Values

* All enum types will automatically have a
values() method that returns an array of all
enumerated values for that type...

Suit[] suits = Suit.values();

for(Suit s : suits) {
System.out.println(s);

}



Comparison of Enumerated Values

* Since user’s cannot construct enum instances
there can only be 1 instance of each value

* As such, we can actually compare enums using
the == operator...

if(suit == Suit.CLUBS) A
// do something
s



Comparison of Enumerated Values

* Enums can also be used with the switch
control structure...

Suit suit = /*x ... *x/;

switch (suit) {

case CLUBS:

case SPADES:
// do something
break;

case HEARTS:

case DIAMONDS:
// do something else
break;

default:
// yet another thing
break;

15



One Gotcha

* |f you have a reference to an enum instance,
then you’re assured to have a valid value

* The key word being “if” — you’ll likely still
need to check that the reference is set

— In other words, you may need to check that the
reference does/doesn’t refer to null



