Encapsulation

CMSC 202



Types of Programmers

* Class creators
— Those developing new classes

— Want to build classes that expose the minimum
interface necessary for the client program and hide
everything else

* Client programmers

— Those who use the classes (a term coined by Scott
Mevyer)

— Want to create applications by using a collection of
interacting classes



OOP Techniques

* Class creators achieve their goal through
encapsulation

* Encapsulation:

— Combines data and operations into a single entity
(a class)

— Provides proper access control
— Focuses on implementation

— Achieved through information hiding
(abstraction)



The Value of Encapsulation

* Client programmers do not need to know how
the class is implemented, only how to use it

 The information the client programmer needs
to use the class is kept to a minimum

* Class implementation may be changed with no
impact on those who use the class



Access Control

* Encapsulation is implemented using access
control
— Separates interface from implementation

— Provides a boundary for the client programmer

* Visible parts of the class (the interface)

— Can only be used, not modified, by the client
programmer

* Hidden parts of the class (the implementation)

— Can be changed by the class creator without
impacting any of the client programmer’s code

— Can’t be corrupted by the client programmer



Access Control in Java

* Visibility modifiers provide access control to
members and methods
— public visibility — accessible by everyone, in
particular the client programmer
* A class’s interface is defined by its public methods

— private visibility — accessible only by the methods
within the class

— Others — later



Car Class

* In this new Car class, the instance variables have been
labeled private

public class Car {

private
private
private

private
private
private
private

public String toString() {

int horsepower;
int numDoors;
int year;

String vin;
String color;
String model; Any Car object may use

String make; its private members
within a method

return year + " " + make + " " + model;

}
//



Access Control Example

e Original Car class — no visibility modifiers were used

* New Car class — private members attempting to be used

public class CarDemo ({

public static void main(String[] args) {

Car car = new Car|() ;

car.color = "black"; //
car.make = "Mazda"; //
car.model = "3"; //
car.year = 2008; //
car.setColor ("red") ; //

System.out.println(car) ;

compiler
compiler
compiler
compiler
OK

error
error
error
error



Private Instance Variables

Private instance variables are only usable within
the class

Private instance variables hide implementation
details, promoting encapsulation

Private instance variables are not accessible by
the client programmer (class user)

Good programming practice:

— Label all instance variables as private

— The class has complete control over how/when/if the
instance variables are changed



Encapsulation Summary

* Combine methods and data in a single class
e Use private instance variables for information
hiding

* Minimize the class’s public interface

~

Keep it secret,
keep it safe

J

10



Accessors & Mutators

Class behavior may allow access to, or modification of,
individual private instance variables

Accessor methods (getters)
— Retrieves the value of a private instance variable
— Java conventions have us start the method name with get
— Edge case for booleans — starts with is
Mutator methods (setters)
— Changes the value of a private instance variable
— Conventional to start the name of the method with set

Gives the client program indirect access to the
instance variables



More Accessors and Mutators

 Doesn’t the use of accessors and mutators
defeat the purpose of making the instance
variables private?
— No, the class implementer decides which instance
variables will have accessors

* Mutators can:
— Validate the new value of the instance variable

— Decide whether or not to actually make the
requested change



Example Car Accessor & Mutator

public class Car {

private int year; // 4-digit year between 1000 and 9999

private String vin;

// accessor to return the vin member

public String getVin() {
return vin;

}

// mutator to change the year member
public boolean setYear (int newYear) {
if (1000 <= newYear && newYear <= 9999) {
year = newYear;
return true;

}

return false;

13



Accessor/Mutator Caution

* |n general you should NOT provide accessors
and mutators for all private instance variables

— Recall that the principle of encapsulation is best
served with a limited class interface

* Too many accessors and mutators lead to
writing procedural code rather than OOP code

— More on this later



Private Methods

* Methods may also be private
— Cannot be invoked by a client program

— Can only be called by other methods within the
same class definition

— Most commonly used as “helper” methods to
support top-down implementation of a public
method



Private Method Example

public class Car {

private int year; // 4-digit year between 1000 and 9999

// helper method - internal use only
private boolean isValidYear (int year) {
return 1000 <= year && year <= 9999;

}

// mutator to change the year member
public boolean setYear (int newYear) {
if (isValidYear (newYear)) {
year = newYear;
return true;

}

return false;

16



More About Methods

Different classes can define a method with the same name

Java can determine which method to call based on the type
of the calling object

Example:

Cat fluffy = new Cat();
Dog fido = new Dog();
System.out.println (fluffy) ;
System.out.println(£fido) ;

println (fluffy) will callthe toString () method
defined in the Cat class because f1uffy’s type is Cat

println (fido) will call the toString () method
defined in the Dog class because £ido’s type is Dog



Method Overloading

* Two or more methods in the same class may
also have the same name

* This technique is known as method
overloading



Overloaded setStyle Method

* The Car class setStyle method:

public boolean setStyle(String make, String model)

* Suppose we wanted to change the model?
— Define another method named setSytle():

public boolean setStyle (String make)

* After all, setStyle is a good descriptive name for
what this method does



Car Class — Overloaded setStyle

public class Car {

//

private String model;

private String make;

public boolean setStyle(String make, String model) {

if (isValidMake (make) && isValidModel (model)) {

this.make = make;
this.model = model;
return true;

}

return false;
}
public boolean setStyle(String make) {
if (isValidMake (make)) {
this.make = make;
return true;

}

return false;

}

private boolean isValidMake (String make) ({
return make !'= null && 'make.equals("");

}

private boolean isValidModel (String model) {
return model !'= null && !'model.equals("");

}

20



CarDemo Class

public class CarDemo ({

public static void main(String[] args) {
Car car = new Car();

car.setStyle ("Mazda") ;
System.out.println(car) ;

car.setStyle ("Audi", "A8");
System.out.println() ;

How does Java know which setStyle method to call?



Method Sighature

A method is uniquely identified by

— |ts name and

— |ts parameter list (types and order)

* This is known as its signature

 Examples...

public boolean
public boolean
public boolean
public boolean
public boolean

setStyle (String make, String model)

setStyle (int year, String make, String model)
setStyle (String make, String model, String color)
setStyle (int year, String color)

setStyle (String make)



Return Type is Not Enough

e Suppose we attempt to overload Car’s setStyle() method by
using different return types.

public void setSytle(String make) { /* code here */ }
public boolean setStyle(String model) { /* code here */ }

* Thisis NOT valid method overloading because the code
that calls setStyle () canignore the return value.

car.setStyle ("Mazda") ;

* The compiler can’t tell which setStyle () method to call

 Just because a method returns a value doesn’t mean the
caller has to use it.



Too Much of a Good Thing

Automatic type promotion and overloading can sometimes interact in
ways that confuse the compiler — for example...

//version 1
public double calculateAverage (int a, double b) { /* code */ }

//version 2
public double calculateAverage (double a, int b) { /* code */ }

And then consider this:

MathUtils math = new MathUtils() ;
math.calcAverage (5, 7);

The Java compiler can’t decide whether to
— promote 7 to 7.0 and call the first version of calculateAverage, or
— Promote 5 to 5.0 and call the second
Solutions
— Select more appropriate function name that calculateAverage
— Cast the arguments so they match one of the signatures



