
2/20/2014

1

Classes

CMSC 202

Version 9/12 2

Programming & Abstraction
• All programming languages provide some 

form of abstraction.

– Also called information hiding

– Separates code use from code implementation

• Procedural Programming

– Data Abstraction:  using data structures

– Control Abstraction:  using functions

• Object Oriented Programming

– Data and Control Abstraction:  using classes

Procedural vs. Object Oriented

Procedural

Calculate the area of a circle 
given the specified radius

Sort this class list given an 
array of students

Calculate the student’s GPA 
given a list of courses

Object Oriented

Circle, what’s your radius?

Class list, sort your students

Transcript, what’s the 
student’s GPA?

3



2/20/2014

2

What is a Class?

• From the Dictionary

– A kind or category

– A set, collection, group, or configuration 
containing members regarded as having 
certain attributes or traits in common

• From an Object Oriented Perspective

– A group of objects with similar properties, 
common behavior, common relationships 
with other objects, and common semantics

– We use classes for abstraction purposes.

4

Classes

Classes are “blueprints” for creating a group 
of objects.

A bird class to create bird objects

A car class to create car objects

A shoe class to create shoe objects

The blueprint defines

The class’s state/attributes as variables

The class’s behavior as methods

5

Class or Object?

• Variables of class types may be created 
just like variables of built-in types.

– Using a set of blueprints you could create a 
bakery.

• You can create as many instances of the 
class type as you like.

– There is more than one bakery in Baltimore.

• The challenge is to define classes and 
create objects that satisfy the problem.

– Do we need an Oven class?

6



2/20/2014

3

Structures

What about structs?

Collection of data

No operations explicitly related

struct DayOfYear

{

int month;

int day;

};

DayOfYear july4th;

july4th.month = 7;

july4th.day = 4;

Members

Structures

Good

Simple

Can be parameters to functions

Can be returned by functions

Can be used as members of other structs

Bad

No operations

Data is not protected

Any code that has access to the struct object has 
direct access to all members of that object

Classes – a Struct Replacement

Good

Simple

Objects can be parameters to functions

Objects can be returned by functions

Objects can be members of other classes

Operations linked to data

Data is protected

Code that uses an object MUST use the operators of the class to 
access/modify data of the object (usually)

Bad

Nothing really…



2/20/2014

4

Class Interface

• The requests you can make of an object are 
determined by its interface.

• Do we need to know how bagels are made in 
order to buy one?
– All we actually need to know is which bakery to go 

to and what action we want to perform.

Bakery Class
Is the bakery open/closed?
Buy bread
Buy bagel
Buy muffin
Buy coffee
…

Type

Interface

10

Implementation

Code and hidden data in the class that 
satisfies requests make up the class's 
implementation.

What’s hidden in a bakery?

Every request made of an object must have 
an associated method that will be called.

In OO-speak we say that you are sending a 
message to the object, which responds to 
the message by executing the appropriate 
code.

11

Recall . . .
Class

– A complex data type containing:

• Attributes – make up the object’s state

• Operations – define the object’s behaviors

12

Operations
(behaviors)

Type

Attributes 
(state)

String
sequence of characters
more?

compute length
concatenate
test for equality
more?

Bank Account
account number
owner’s name
balance
interest rate
more?

deposit money
withdraw money
check balance
transfer money
more?

Version 9/12



2/20/2014

5

Class Example

class Car

{

public:

bool AddGas(float gallons);

float GetMileage();

// other operations

private:

float m_currGallons;

float m_currMileage;

// other data

};

Operations

Data

Class-name

Protection Mechanism

Protection Mechanism

Struct vs. Class

struct DayOfYear

{

int month;

int day;

};

// Code from main()

DayOfYear july4th;

july4th.month = 7;

july4th.day = 4;

class DayOfYear

{

public:

int m_month;

int m_day;

};

// Code from main()

DayOfYear july4th;

july4th.m_month = 7;

july4th.m_day = 4;

Class Rules – Coding Standard

Class names

Always begin with capital letter

Use mixed case for phrases

General word for class (type) of objects

Ex: Car, Boat, Building, DVD, List, Customer, BoxOfDVDs, 
CollectionOfRecords, …

Class data

Always begin with m_

Ex: m_fuel, m_title, m_name, …

Class operations/methods

Always begin with capital letter

Ex: AddGas(), Accelerate(), ModifyTitle(), RemoveDVD(), …



2/20/2014

6

Class - DayOfYear
// Represents a Day of the Year

class DayOfYear

{

public:

void Output();

int m_month;

int m_day;

};

// Output method – displays a DayOfYear

void DayOfYear::Output()

{

cout << m_month << “/” << m_day;

}

// Code from main()

DayOfYear july4th;

july4th.m_month = 7;

july4th.m_day = 4;

july4th.Output();

Method Implementation

void DayOfYear::Output()

{

cout << m_month

<< “/” << m_day;

}

Class Name

Scope Resolution 

Operator: indicates 

which class this 

method is from Method Name

Method 

Body

Classes
// Represents a Day of the Year

class DayOfYear

{

public:

void Output();

int m_month;

int m_day;

};

// Output method – displays a DayOfYear

void DayOfYear::Output()

{

cout << m_month << “/” << m_day;

}

Class Definition

Goes in file 

ClassName.cpp

Class 

Declaration

Goes in file 

ClassName.h



2/20/2014

7

Classes, Part II

Section Goals

Abstraction

Provide a simple interface to other classes/functions

Information Hiding

Hide details of data storage and implementation

Encapsulation

Control access to data

Private versus Public

Definition…

Classes describe user-defined ADTs

Abstract Data Types

Class Member Access
Public

Any code can access this member

Private

Only members of the class can access this member

Default?  If access mode unspecified, members are private

Syntax:

class ClassName

{

public:

// public functions

// public data

private:

// private functions

// private data

};



2/20/2014

8

Improved DayOfYear Class

class DayOfYear 

{ 

public: 

void Input( ); 

void Output( ); 

void Set( int newMonth, int newDay ); 

void Set( int newMonth ); 

int GetMonthNumber( ); 

int GetDay( ); 

private: 

int m_month; 

int m_day; 

}; 

This is the Class 

declaration –

belongs in 

DayOfYear.h

Using DayOfYear Class
int main( ) 

{ 

DayOfYear today;

// Attempt to use private data…

today.m_month = 2; // ERROR!

today.m_day = 23; // ERROR!

cout << “Today: “ << m_month << “/” 

<< m_day << endl; // ERROR!

// Instead, use public methods…

today.Set( 2, 23 );

cout << “Today: “ << today.GetMonth() << “/” 

<< today.GetDay() << endl;

return 0; 

} 

Improved DayOfYear Class

class DayOfYear 

{ 

public: 

void Input( ); 

void Output( ); 

void Set( int newMonth, int newDay ); 

void Set( int newMonth ); 

int GetMonthNumber( ); 

int GetDay( ); 

private: 

int m_month; 

int m_day; 

}; 

What are 

these 

methods?



2/20/2014

9

Class Methods

Accessors

Allow outside code to inspect a private data member

Start with “Get” (usually)

Mutators

Allow outside code to modify a private data member’

Start with “Set” (usually)

Facilitators (Services)

Provide some service for outside code

Print all class data

Retrieve data from user

Format data into a string

Calculate something

Accessors, Mutators, Facilitators?
class DayOfYear

{ 

public: 

void Input( ); 

void Output( );

void Set( int newMonth, int newDay ); 

void Set( int newMonth );

int GetMonthNumber( ); 

int GetDay( ); 

private: 

int m_month; 

int m_day; 

}; 

Mutators

Accessors

Facilitators

Class Implementation (Simple…)
void DayOfYear::Set( int newMonth, int newDay )

{

m_month = newMonth;

m_day = newDay;

}

void DayOfYear::Set( int newMonth )

{

m_month = newMonth;

m_day = 1;

}

int DayOfYear::GetMonthNumber( )

{

return m_month;

}

int DayOfYear::GetDay( )

{

return m_day;

}

How could 

the Set 

methods be 

improved?

These method 

implementations 

belong in 

DayOfYear.cpp 

file



2/20/2014

10

Class Implementation (Improved)
//---------------------------------------------------

// Set 

// PreConditions: 

// 1 <= newMonth <= 12 

// 1 <= newDay <= 31 

// PostConditions: 

// day of year changed to user supplied values

//  if an error, exit program

//---------------------------------------------------

void DayOfYear::Set(int newMonth, int newDay) 

{ 

if ((newMonth >= 1) && (newMonth <= 12)) 

m_month = newMonth; 

else 

{ 

cout << "Illegal month value! Program aborted.\n"; 

exit(1); 

} 

if ((newDay >= 1) && (newDay <= 31))

m_day = newDay; 

else 

{ 

cout << "Illegal day value! Program aborted.\n"; 

exit(1); 

} 

} 

More Improvements

How else could this be improved?

Valid day for each month 

Ex: April has 30 days

Valid day for month and year

Ex: February has 28 or 29 days, depending on year

Bad data?

Set to “safe” value (ex: 1 for month or day)

Print an error & keep data

Return “false” to indicate illegal state

Set flag to “invalid object” (Zombie objects)

DayOfYear Input
void DayOfYear::Input( ) 

{ 

cout << "Enter the month as a number: "; 

cin >> m_month; 

cout << "Enter the day of the month: "; 

cin >> m_day;

if ((m_month < 1) || (m_month > 12) 

|| (m_day < 1) || (m_day > 31)) 

{ 

cerr << "Illegal date! Program aborted.\n"; 

exit(1); 

} 

}



2/20/2014

11

DayOfYear Output
void DayOfYear::Output( ) 

{ 

switch (m_month) 

{ 

case 1:  cout << "January   "; break; 

case 2:  cout << "February  "; break; 

case 3:  cout << "March     "; break; 

case 4:  cout << "April     "; break; 

case 5:  cout << "May       "; break; 

case 6:  cout << "June      "; break; 

case 7:  cout << "July      "; break; 

case 8:  cout << "August    "; break; 

case 9:  cout << "September "; break; 

case 10: cout << "October   "; break; 

case 11: cout << "November  "; break; 

case 12: cout << "December  "; break; 

default: cout << "Error in DayOfYear::Output."; break; 

} 

cout << m_day; 

}  

Using DayOfYear Class
int main( ) 

{ 

DayOfYear today, bachBirthday;

// input and echo today's date 

cout << "Enter today's date:\n"; 

today.Input( ); 

cout << "Today's date is "; 

today.Output( ); cout << endl;

// set and output JSB's birthday 

bachBirthday.Set(3, 21); 

cout << "J. S. Bach's birthday is "; 

bachBirthday.Output( ); 

cout << endl;

Using DayOfYear Class
// CONT.

// output special message 

if ((today.GetMonthNumber( ) == bachBirthday.GetMonthNumber( )) 

&& (today.GetDay( ) == bachBirthday.GetDay( ) )) 

cout << "Happy Birthday Johann Sebastian!\n"; 

else 

cout << "Happy Unbirthday Johann Sebastian!\n"; 

return 0; 

} 



2/20/2014

12

Class Design
Ask yourself:

What properties must each object have?

What data-types should each of these be?

Which should be private? Which should be public?

What operations must each object have?

What accessors, mutators, facilitators?
What parameters must each of these have?

Const, by-value, by-reference, default?

What return value should each of these have?

Const, by-value, by-reference?

Which should be private? Which should be public?

Rules of thumb:

Data should be private (usually)

Operations should be public (usually)

At least 1 mutator and 1 accessor per data member (usually)

Guarding Header Files

To use a class, must #include declaration
#include “className.h”

Every file that uses class should #include it

How do you protect from including twice?
#ifndef CLASSNAME_H

#define CLASSNAME_H

// class declaration here…

#endif

Guard EVERY .h file

Include EVERY .h file that you directly use

Practice

Design & Implement the “Stapler” class

Data

Number of Staples
Integer

Private

Operations

Fill – fill stapler to max capacity
Parameters? None

Return value? None

Public

Staple – dispense one staple
Parameters? None

Return value? Bool – was action successful or not

Public



2/20/2014

13

Challenge
Design and Declare an “Alarm Clock” class that beeps when the alarm goes off…

What properties?

What operations?

Implement your Alarm Clock class

Assume there are functions implemented in a standard library called:

int GetCurrentHour(); - returns 0 to 23

int GetCurrentMinute(); - returns 0 to 59

Assume there exists an external mechanism to make the clock update every 
minute...keep it simple…

Write a main function that 

Displays the current time to the user

Sets the alarm for 9:51 am (so that you’re not late for your 10 am class)

Classes, Part III

Warmup

Using the following part of a class, implement the 
Sharpen() method, it removes 1 from the length:

class Pencil

{

public:

bool Sharpen();

private:

int m_length;

};



2/20/2014

14

Class Review

class DayOfYear

{ 

public: 

void Input( ); 

void Output( );

void Set( int newMonth, int newDay ); 

void Set( int newMonth );

int GetMonthNumber( ); 

int GetDay( ); 

private: 

int m_month; 

int m_day; 

};

// Declaring a DayOfYear object

DayOfYear today;

Mutators

Accessors

Facilitators

What’s going on here?

Constructors

Special Methods that “build” (construct) an object

Supply default values

Initialize an object

Syntax:

ClassName();

ClassName::ClassName(){ /* code */ }

Notice

No return type

Same name as class!

Constructor Example
class DayOfYear 

{ 

public:

DayOfYear( int initMonth, int initDay );

void Input( ); 

void Output( );

void Set( int newMonth, int newDay ); 

void Set( int newMonth );

int GetMonthNumber( ); 

int GetDay( ); 

private: 

int m_month; 

int m_day; 

};



2/20/2014

15

Constructor Example 
Implementation

DayOfYear::DayOfYear( int initMonth, int initDay )

{

m_month = initMonth;

m_day = initDay;

}

// Improved version

DayOfYear::DayOfYear( int initMonth, int initDay )

{

Set(initMonth, initDay);

}

How can this 

method be 

improved?

Why use a 

mutator?

Constructor Example 
Implementation

Initialization Lists

Alternative to assignment statements 
(sometimes necessary!)

Comma-separated list following colon in method 
definition

Syntax:
DayOfYear::DayOfYear( int initMonth, int initDay )

: m_month( initMonth ), m_day( initDay )

{

}

Overloading Constructors
Yes – different parameter lists

Example

class DayOfYear 

{ 

public:

DayOfYear( int initMonth, int initDay );

DayOfYear( int initMonth );

DayOfYear( );

// other public methods…

private: 

int m_month; 

int m_day; 

};



2/20/2014

16

Overloading Constructors
DayOfYear::DayOfYear( int initMonth, int initDay )

{

Set(initMonth, initDay);

}

DayOfYear::DayOfYear( int initMonth )

{

Set(initMonth, 1);

}

DayOfYear::DayOfYear( )

{

Set(1, 1);

}

What would be 

another alternative 

to having all 3 of 

these methods?

Overloading Constructors

class DayOfYear

{ 

public:

DayOfYear( int initMonth = 1, int initDay = 1 );

// other public methods…

private: 

int m_month; 

int m_day; 

};

DayOfYear::DayOfYear( int initMonth, int initDay )

{

Set(initMonth, initDay);

}

Default Parameters!

Constructors

Why haven’t we seen this before?

Compiler builds a default constructor

Unless you define a constructor…

Think about the following:

vector<DayOfYear> days( 20 );

Calls default constructor for DayOfYear!

What if something goes wrong?

One solution: Zombie objects

Another solution: Throw exception (later…)



2/20/2014

17

Zombie Objects
class DayOfYear 

{ 

public:

DayOfYear( int initMonth = 1, int initDay = 1 );

bool isValid();

// other public methods…

private: 

int m_month; 

int m_day;

bool m_isValid;

};

bool DayOfYear::isValid()

{

return m_isValid;

}

DayOfYear::DayOfYear( int initMonth, int initDay )

:m_month( initMonth), m_day( initDay )

{

if (m_month < 1 || m_month > 12) 

m_isValid = false; 

else if ( m_day < 1 || m_day > 31) 

m_isValid = false; 

else if ( day too big for the specified month) 

m_isValid = false 

else 

m_isValid = true;

}

Practice

Stapler class

What would the constructor look like?

Initialize a stapler to have 50 staples

Const and Objects

With an Object

const DayOfYear jan1st(1, 1);

jan1st.Set(1, 5); // ERROR

myfile.cpp: In function `int main()': 

myfile.cpp:20: passing `const DayOfYear' as 

`this' argument of `void DayOfYear::Set(int, 

int)' discards qualifiers



2/20/2014

18

Const and Methods

Const member functions

Promise not to modify the current object

Usually accessors, print functions, …

Compiler checks

Directly – is there an assignment to data member in 
method?

Indirectly – is there a call to a non-const method?

Syntax

retType methodName(parameters) const;

Const Example
class DayOfYear 

{ 

public:

DayOfYear( int initMonth = 1, int initDay = 1 );

void Input( ); 

void Output( ) const;

void Set( int newMonth, int newDay ); 

void Set( int newMonth );

int GetMonthNumber( ) const; 

int GetDay( ) const; 

private: 

int m_month; 

int m_day; 

};

Promise not to 

alter data 

members!

Const Rules

Const member functions
Can be called on const and non-const objects

Can call other const member functions

Cannot call non-const member functions

Non-const member functions
Can be called only on non-const objects

Otherwise, compiler error!

Can call const and non-const member functions

Const objects
Can be passed as const argument

Non-const objects
Can be passed as const or non-const argument



2/20/2014

19

Practice?

What is wrong with this?

int DayOfYear::GetDay ( ) const 

{ 

if (m_day < 1 ) 

Set( m_month, 1 ); 

return m_day; 

}

Practice
What is wrong with this?

void Bob ( const DayOfYear& doy) 

{ 

OutputDayOfYear ( doy ); 

cout << "Please enter your birth month and day \n"; 

int birthMonth, birthDay; 

cin >> birthMonth >> birthDay; 

doy.Set( birthMonth, birthDay ); 

}

Implementing with Const

Start from the beginning

Don’t try to add const at the end of implementing

Use for

Member functions that don’t change object

Facilitators (maybe) and Accessors (most definitely)

Parameters whenever reasonable

Not with pass-by-value

Yes with pass-by-reference



2/20/2014

20

Designing Classes

Ask yourself the following questions:

What are the responsibilities of this type of object?

What actions can an object take?

What actions can another function take on an object?

What information does an object store?

What information does an object need access to?

For each method:

What parameters (const, ref, const-ref, val)?

Preconditions – what values are legal for parameters?

What return value (const, ref, const-ref, val)?

Postconditions – what was altered by method?

Does this method change the object (const, non-const)?

Practice – Add const!

#include <string> 

using namespace std; 

class Person { 

public: 

Person( string name, int age ); 

string GetName( ); 

int GetAge( ); 

void HappyBirthday( ); 

private: 

string m_name; 

int m_age; 

}; 

#include <iostream>

#include "Person.h“

using namespace std;

Person::Person( string name, int age ) 

{ 

m_name = name; 

m_age = age; 

} 

string Person::GetName( ) 

{ 

return m_name;

} 

int Person::GetAge( ) 

{ 

return m_age; 

} 

void Person::HappyBirthday( ) 

{ 

cout << "Happy Birthday " << m_name << endl;

++m_age; 

} 

Challenge

Revisiting our Staple class
Add a constructor

Initialize number of staples to the value of a parameter

Retain the “Staple” method
Removes 1 staple

Retain the “Fill” method
Completely fills to 100

Add a “AddStaples” method
Adds some number of staples (parameter)

Add a “GetNbrOfStaples” method
Returns the current number of Staples

Add consts whenever appropriate
Parameters and methods!



2/20/2014

21

Classes, Part IV

Warmup

Class Oven

{

public

Oven( int initTemp = 0 );

void SetTemp( int newTemp );

int GetTemp() const;

private

int m_temp = 0;

}

Oven( int initTemp = 0 )

: m_temp(initTemp)

{ }

void setTemp( int newTemp );

{

newTemp = m_temp;

}

int GetTemp()

{

return m_temp;

}

There are 9 compiler errors (not counting 

duplicated errors), 

can you find them all?

There is 1 logic error, can you spot it?

Warmup (Corrected)

class Oven

{

public:

Oven( int initTemp = 0 );

void SetTemp( int newTemp );

int GetTemp() const;

private:

int m_temp;

};

Oven::Oven( int initTemp )

: m_temp(initTemp)

{ }

void Oven::SetTemp( int newTemp )

{

m_temp = newTemp;

}

int Oven::GetTemp() const

{

return m_temp;

}



2/20/2014

22

Review

What term is used for “instance of a class”?

What is another term for “information hiding”?

What is a name for functions in a class?

What is a default constructor?

What are the limitations of a const object?

What does “const” mean with a method?

Student Class

Designing a Student…

What data do we need?

Name

SSN

Address

Phone

Email ID

Course list

…

Let’s think about the 

Address, how can 

we represent that?

Aggregation

Objects can hold other objects!
Class defines a private data member of another Class-

type

“has-a” relationship

Example

class Student

{

public:

// some methods…

private:

Address m_address;

// more data…

};



2/20/2014

23

Aggregation

We have 3 classes for this project

MazeCell

Maze

MazeCrawler

How can we use aggregation here?

Aggregation – Another Look

class Vacation

{

public:

Vacation( int month, int day, int nbrOfDays );

// more methods…

private:

DayOfYear m_startDay;

int m_lengthOfTrip;

// more data…

};

Vacation::Vacation( int month, int day, int nbrOfDays )

: m_startDay(month, day), m_lengthOfTrip(nbrOfDays)

{

// code…

} What’s going 

on here?

Implicit call to the Constructor!

Remember – initializer lists 

were important!  Only way to 

call Constructor!

Aggregation

class Vacation

{

public:

Vacation( int month, int day, int 
nbrOfDays );

// more methods…

private:

DayOfYear m_startDay;

int m_lengthOfTrip;

// more data…

};

Can Vacation access 

DayOfYear’s private 

data members?



2/20/2014

24

Aggregation
House “has-a”

Front Door

Set of bedrooms

Garage

Address

Garage “has-a”

Lawnmower

Rake

Car

Car “has-a”

Driver

Set of passengers

Driver “has-a”

Name

Address

…

You can have as many 

layers of aggregation as 

you need – until you get 

to a set of primitive 

types!

Static

int foobar()

{

int a = 10;

++a;

return a;

}

int foobar()

{

static int a = 10;

++a;

return a;

}

What is 

returned?

What is 

returned?Ah…tricky…

‘a’ retains its value 

between calls to 

foobar…

11, 12, 13, 14, 15, …

11, 11, 11, 11, 

11, …

Static and Classes?

Static data member

ALL objects share data

If one changes, affects all

Static methods

Can access static data

CANNOT access non-static data or methods

Regular methods

Can access static data

Can access non-static data and methods



2/20/2014

25

Static Example

class Person

{

public:

static bool SpendMoney(int amount);

private:

static Wallet m_wallet;

Wallet m_moneyClip;

};

// In Person.h

Wallet Person::m_wallet(0);

bool Person::SpendMoney( int amount )

{

m_wallet.RemoveMoney(amount);

m_moneyClip.RemoveMoney(amount); // compiler error!!!

}

// In main

// Create a person

Person Bob;

// Bob adds money to the wallet

Bob.AddMoney(100);

// Anyone can call SpendMoney!

Person::SpendMoney(100);

// Bob has no money!

Bob.SpendMoney(10); // fails!!

If any money is spent, 

everyone has lost that 

money!

Incremental / Modular Development 
& Compilation

General Programming Approach
Bottom-Up Development

Work on one class

Write one method at a time
Develop, test, repeat

Test class in isolation

Bottom-Up Testing
Test one class in isolation

Test two classes in isolation 
(when they are connected)

…

Test all classes together

Stubbed Class

class Stapler

{

public:

Stapler();

bool Staple();

void Fill();

bool AddStaples(int nbrStaples);

int GetNbrStaples();

private:

int m_nbrStaples();

};

Stapler::Stapler() 

{ }

bool Stapler::Staple() 

{ return true; }

void Stapler::Fill() 

{ }

bool Stapler::AddStaples(int nbrStaples) 

{ return true; }

int Stapler::GetNbrStaples() 

{ return 0; }

// Testing main

int main()

{

Stapler stapler;

cout << stapler.GetNbrStaples() << endl;

cout << stapler.Staple() << endl;

cout << stapler.GetNbrStaples() << endl;

cout << stapler.AddStaples(10) << endl;

cout << stapler.GetNbrStaples() << endl;

stapler.Fill();

cout << stapler.GetNbrStaples() << endl;

cout << stapler.AddStaples(10) << endl;

cout << stapler.GetNbrStaples() << endl;

return 0;

}



2/20/2014

26

P2 - Design

Test cases

Use these with your Testing main

Run tests on your class EVERY time you modify it

Implementation

Write 5 lines

Save

Compile

Test

Repeat

Challenge

Come up with 1 GOOD example for each of 
the following:

Class that uses aggregation

Class that uses static data

This one may be tough…

Do not use examples from class, slides, text, 
or lecture notes…


