
CMSC 202 Final May 23, 2006

Name: ____________________________ UserID: _________________

(Circle your section)

Section: 101 – Tuesday 11:30 102 – Thursday 11:30

 105 – Tuesday 1:30 104 – Thursday 12:30

Directions

• This is a closed-book, closed-note, closed-neighbor exam.

• Read through the entire test before you begin.

• Start with the questions that are easiest for you, come back to the rest.

• Write CLEARLY, if I cannot read your writing, you will receive a zero for the

problem in question.

• Feel free to continue your answer on the backs of the pages, but make sure that

you indicate where your answer continues.

• When you are done, read over your answers and then bring your exam to the front

of the room.

• Show your Picture ID AND Exam paper to a TA/Instructor, place in correct

pile.

Score
Page Number Points Possible Points Earned

2 10

3 10

4 10

5 15

6 10

7 10

8 10

9 15

10 (EC) 6

11 (EC) 9

TOTAL 100 (+15 EC)

 Page 2 of 11 _______ pts

True/False (10 pts total, 1 pt each)

Read each statement carefully and write true or false on the blank to the left.

____________ 1. The following code does not create a memory leak
 int* ptr = new int(b);

 ptr = new int(a);

 delete ptr;

____________ 2. Like the assignment operator, we must protect an object from

self-assignment in the copy-constructor using the following:
 if (this != &rhs)

____________ 3. Copy constructors, assignment operators and destructors are not

inherited in polymorphism

____________ 4. An abstract class is defined as a class that has at least one

virtual method and cannot be instantiated.

____________ 5. Class methods (member functions) cannot be declared as

protected.

____________ 6. The default overloaded operator= (provided by the compiler)

results in a deep copy of memory.

____________ 7. Functions cannot be templated, only classes

____________ 8. Given this templated prototype of the class Stack:
 template <class T> class Stack;

The following is an appropriate way of defining a Stack object:
 Stack<T = int> myStack;

____________ 9. When polymorphism is used in C++, the base-class constructor

is called before the derived-class constructor.

____________ 10. When an exception is thrown in a constructor, the object

creation is completed, but the object is set as invalid, or a

Zombie object.

I pinch

 Page 3 of 11 _______ pts

Short Answer

Complete each of the short-answer coding questions. You

may assume that the questions build on each other and that

previously implemented lines can be used in later questions.

Assume there is a class named Crab with derived classes

named HermitCrab and BlueCrab.

11. (2 pt) Define a dynamic array of Crab pointers. Assume that the size of the

array is in a variable named 'size'.

12. (2 pt) Assume there are already 2 Crabs (of various subtypes) in the array.

Add a BlueCrab to the array. Assume size > 2.

13. (6 pts) Assume that the Clone() method is overloaded for all Crab types.

Using the Clone() method, implement the code that will allocate new memory

for the Crab array such that the old array information is copied into the new

array of size = size * 2 (the new array is twice the size of the old).

 Page 4 of 11 _______ pts

14. (5 pts) Assume the HermitCrab has an overloaded constructor that accepts a

shell-size (integer size > 0). Assume there are also a related mutator and an

accessor. Assume the following lines are defined:
HermitCrab a(1);

const HermitCrab b(3);

Identify whether the following lines are compilable. If not, describe why.

Assume each chunk of code is examined in isolation of the others.

Will Compile

(Yes/No)?

Code…

____________ HermitCrab* const q = &a;

q->MoveIntoShell(8);

____________ const HermitCrab* p = &a;

p->MoveIntoShell(8);

____________ HermitCrab* const m = &b;

m->MoveIntoShell(2);

____________ const HermitCrab* r = &b;

r->MoveIntoShell(8);

____________ const HermitCrab* p = &b;

p = &a;

15. (5 pts) Prototype the accessor of the HermitCrab class so that the following

code compiles.

const HermitCrab* t = &b;

b.GetShellSize();

 Page 5 of 11 _______ pts

16. (10 pts) Assume that the HermitCrab MoveIntoShell() used in the previous

question throws a ShellTooSmall and some other exception. Assume there are

5 (five) Crabs in the dynamic array from page 3.

a. Write a loop that will call MoveIntoShell() to move each Crab into a new

shell. Use srand() and rand() to generate random shell sizes to pass as

the parameter.

b. Using a try/catch block, correctly catch the exceptions thrown by

MoveIntoShell().

i. If a ShellTooSmall exception is caught, use the GetShellSize()

method and move the Crab into a shell one greater than its

current size. Continue processing the next crab.

ii. If some other exception is caught, the exception should be re-

thrown.

17. (5 pts) Implement the HermitCrab MoveIntoShell that accepts a single integer

parameter (shellSize). Assume there is a data member named 'm_currShell'. If

the new shell size is less than or equal to m_currShell, throw a ShellTooSmall

exception. Ignore the other exception described in the previous question.

 Page 6 of 11 _______ pts

Class Implementations

18. (10 pts) Write the class definition (header file) for the Crab class. Use static,

constants, virtual and references whenever appropriate. The Crab class has the

following members:

a. name – dynamic data member, string

b. Default constructor – sets name to empty string

 [may combine with non-default]

c. Non-default constructor – sets name to parameter

 [may combine with default]

d. Copy constructor – performs a deep copy of parameter

e. Destructor – destroys object

f. GetName – returns the Crab's name

g. NewShell – Crab obtains a new shell, this may be overridden by derived

classes

h. Move – Crab moves "ahead", this must be overridden by derived classes

 Page 7 of 11 _______ pts

19. (4 pts) Discuss the difference between a shallow and deep copy for the copy-

constructor of the Crab class. Draw a picture to illustrate your argument.

20. (3 pts) Implement the copy constructor of the Crab class using a deep copy.

21. (3 pts) Implement the destructor for the Crab class.

 Page 8 of 11 _______ pts

22. (2 pts) Assume that we would like to create a collection of Crabs without using

polymorphism, called a Bushel. Prototype (i.e. forward-declare) the Bushel

class as a class templated on a single type of Crab.

23. (2 pts) Define the collection data member of the Bushel class using a vector of

pointers to the type of Crab. Ignore the rest of the class definition.

24. (2 pts) Create a Bushel of HermitCrabs.

25. (4 pts) Implement the AddItem method for the Bushel class. The method

accepts a single object to add to the collection and then stores it in the

collection item from #23.

 Page 9 of 11 _______ pts

Exposition

26. (5 pts) Describe the differences between method overriding and method

overloading. Provide an example to support your comparison.

27. (5 pts) Briefly discuss the pros and cons of using inline functions.

28. (5 pts) Why is it important to protect an object from self-assignment (i.e.

assigning A to itself)? (Hint: think about dynamic memory)

 Page 10 of 11 _______ pts

Extra Credit

For Problems 29 and 30, assume that you want to implement a templated Stack

(push, pop), but only have access to a Vector with the following methods:

• insert(iter), inserts an item before the position pointed to by the

iterator parameter

• erase(iter), removes the object pointed to by the iterator from the

vector

• Assume that the methods begin(), end(), and size() work exactly as in

the STL vector class, you may also assume that the ++ and -- operators

work with these iterators.

[Hint: think of the Vector as the data member of the Stack class]

29. (3 pts) Implement the push() method for your Stack using the Vector.

30. (3 pts) Implement the pop() method for your Stack using the Vector.

 Page 11 of 11 _______ pts

31. (3 pts) If I had asked you to build a Vector on a Linked-List, what would be the

greatest difficulty with implementing an at(i) method that returns the object in

the ith position?

32. (4 pts) Use the STL algorithm 'for_each' to print all of the items in your Stack.

33. (2 pts) If you were a crab, what would you say if I told you that I had some tongs

and butter in the back of my SUV?

