[image: image1.png]

Project 2 – Get Lost!
“I really could have used Python when I was stuck in that
 corn maze!” – anon.
“You have two minutes to draw a maze
that takes me one minute to solve.”

—Cobb to Ariadne, in “Inception”
Mazes are a fun diversion, and but they can sometimes be quite challenging, even frustrating. Fortunately, solving mazes is a very practical application of the raw power of a computer. For this project, you will write a Python program that solves a maze using a recursive search algorithm. Don’t worry—we’ve generated the maze for you, specified in an input file we’ll show you how to read.
This project will exercise your skill with designing algorithms, using Python data structures, reading data files, processing command line arguments, and implementing recursive functions.

You will be working with a simple rectangular maze consisting of a grid of square spaces divided by walls, some of which have been removed to provide a path from square to square. The dimensions and configuration of the maze, as well as the start square and finish square locations, are all provided as inputs to your program (some of these specifications being given in an input file, and some as command line arguments—details given below). Your program will search out a path from the requested start square to the finish square, travelling left, right, up, or down from square to square without going through any walls. When it finds a solution, it will print out the successful path. If there is no successful path, it must print out an error message.
To solve the maze, you will implement a recursive algorithm--we will cover this concept in depth in lecture. Starting from the start square, your algorithm will scan for all the adjacent squares it can legally travel to in the next step. For each candidate “next square”, it will first check that it has not already been there. If not, it will try adding that square to the path built so far, and recurse to find a path from that new square to the end. If that recursion returns FAILED, it moves on to the next candidate. If all “next square” candidates fail, this instance of the recursion itself returns FAILED.
There are two interesting features of this recursive strategy. First, there is no attempt to apply any “smarts” to the search—this is what is known as a “brute force” approach: you are essentially trying every possible path in the hopes of finding one that happens to work. This unenlightened approach is not always a bad thing. First, it is a good application of the sheer speed of a computer: it is highly likely that your Python program will beat you every time. Second, such algorithms are not easily fooled by certain maze patterns that are designed to deliberately mislead humans, who tend to be easily swayed by certain kinds of visual patterns. Paradoxically, it turns out the algorithm is too dumb to be fooled!

Now, to the details:

Input File Format
The input file specifying the maze layout has the following format:

Line 1:
The first line contains two numbers, specifying the number of rows and columns in the maze.

Line 2-n:
The remainder of the lines in the file specify the wall layout for the squares in the maze, starting from the upper left square, moving across the first row, then left-to-right across the second row, and so on. Each line in the file specifies the walls for one square, and consists of four integers, describing the wall positions in this order: right, bottom, left, top. A ‘1’ means there is a wall, and a ‘0’ means the wall is missing. So, if the first square is specified as “0 0 1 1”, it means the square is open on the right side, open on the bottom, has a wall on the left, and a wall on the top, like so:

Notice that the maze specification has a lot of redundancy: most walls are described as part of the specification for each of two squares which share that wall between them (the only exceptions are the walls on the outside of the maze, which are part of only one square).We did this to make the specification for each square completely independent, making it easier for you to construct and use the maze data structures in your search. You can count on the file data being consistent; e.g., if the line for a given square says it has a right wall, the line that specifies the square to its right is guaranteed to say it has a left wall.

After reading in and constructing the maze, you program will then initialize other data structures needed for the search, and then initiate the recursive search. At the end, if a successful path through the maze is found, the program should print that path; otherwise, it should print out a failure message (see the sample run at the end of this document).
Design Considerations
From a top-down perspective, you should follow these three main steps:

I. main()

First write your main() function, to sequence the top-level tasks:

· printing the greeting

· parsing the command-line arguments

· reading in the maze specification file

· initiating the recursive search for a solution, and waiting for the results

· and finally, outputting the results if a solution was found, error message otherwise.
II. Design the data structure to represent your maze.

You don’t need anything very fancy for this… unless you consider a 3-dimensional list-of-list-of-lists fancy! …which it is, but you all already know enough to deal with this confidently (please, please ask in class if you don’t!). As an example, if you have a Python list named “square_0”, which has four numbers in it (representing the 4 walls), and you have another one much like it named “square_1”, and yet another list “square_2”, you can then make a list-of-lists called “row_0” with:

square_0 = [1, 1, 1, 0]

[make more squares here]

…

row_0 = []

row_0.append(square_0)

row_0.append(square_1)

row_0.append(square_2)

And if you did that a bunch of times to create more rows, you can then make a list-of-lists-of-lists called… oh, I don’t know, how about… “maze”, by doing something like:

maze = []

maze.append(row_0)

maze.append(row_1)

maze.append(row_2)

Except, of course, you would be using loops to put all this together from the input file.

You could then do cool things like test for a wall on a specific side in a specific square via:

if maze[1][2][3] == 1 # row 1, col 2, wall 3 (i.e., the top wall)
By the way, you could also have split the above into two steps by doing something like:

row, col = 1, 2

square = maze[row][col]

for wall in range(4):

 if square[wall] == 0:

 # Explore in this direction because the side is open
III. Design the recursive algorithm.

As with most recursive algorithms, you will write two essential functions to handle the two stages of the recursion process. At the core, you will have the true recursive function (called searchMazeRecurse() below), which is the heart of the algorithm, each recursion instance trying out possible candidate steps to explore by adding onto a growing path. On top of that, you will write a recursion initiation function, which bootstraps the recursion process by preparing for the call to the very first instance of the recursive function with the appropriate parameters and initialized data structures.
Functional Requirements

The following are the functions you will need to write for the project. Make sure you have at least these functions, and that they exactly match the specification outlined here, including what parameters they take and what value(s) they return:

(In the following, some of the functions take a parameter that refers to a position (e.g.: searchMaze() takes a start position and finish position as two of its parameters). We want to be able to pass around a position as a single data structure, to keep things simple. We can easily do this by storing the row and column index together as a list (or tuple) of two integers, and passing this single data structure around.
The required functions are:

· main()
Obviously. Drive the main sequencing of the program, as roughly outlined in the previous section (mostly calls to the functions below). It should check the function calls below for the specific error returns, to see if it should continue.
· printGreeting()
Tells the user what the program is about. No possible error.
· processCommandLineArgs()
This function will get the command line arguments from sys.argv (this will be covered in lecture), and output an error message if the wrong number of arguments are given, reminding the user about appropriate syntax. If all went well, it should return three values (recall how to return multiple values from a function): the filename, the start position, and the finish position (note what we said above about how to represent these coordinates). If the number of aguments was incorrect, it should return (None, None, None); main() should check for filename == None to see if this function failed.
· readMazeFile(filename)
This function should read in the maze specification from the filename specified, and return a maze data structure (however you chose to implement that structure). The maze data structure should be designed to make it simple to determine what the row and column dimensions are. This function should return None on error.
· searchMaze(maze, start_pos, finish_pos)
This function takes a maze data structure as created by readMazeFile(), along with start and finish coordinates. This function’s main job is to set things up for bootstrapping the recursion, including initializing the path-so-far to a single square consisting of the start position, and calling the first level of the recursion with that nominal path as the path-so-far to “continue” searching from. After all the recursion has ended, searchMaze() should return to its caller either: a complete solution path (a list of positions); or: None if there was no solution to be found.
· searchMazeRecurse(maze, path_so_far, finish_pos)
This is the main recursive function. It is describe in much more detail separately below. It should return True if it reaches the finish square, or if one of its recursions does; the path_so_far argument should have been modified in-place to contain the solution path. This function should return False if all attempts failed to find a path from path_so_far to finish_pos.
· printPath(path)
prints out the final path through the maze. Also, you can reuse this function for debugging purposes, to help you trace the progress of your program by calling it at various points as you search.

· [stack functions]
The Stack abstract data type we talked about in class would be useful for maintaining the path_so_far as additional levels of recursion add steps to it or retract failed steps from it. Fortunately, Python already implements a pop() method for lists (did you know that?), and append() is identical to our stack’s “push” operation, so you already have everything you need for treating lists as stacks!
Recursion and searchMazeRecurse():
Assuming things were bootstrapped properly by searchMaze(), any recursive instance of searchMazeRecurse() can assume that the caller (whether a previous instance of searchMazeRecurse(), or searchMaze() itself) has arranged things so that this instance of searchMazeRecurse() can then assume path_so_far contains the list of squares in the current hypothetical path, and just try going into the squares that are immediately adjacent to the last square on the path—of course, watch out that it doesn’t go beyond the edges. For each adjacent candidate, searchMazeRecurse() must first test if the move is possible (i.e., not blocked by a wall), and not a backtracking step (i.e., not already on the path so far). For the candidate sides that pass these tests, searchMazeRecurse() must then test if the candidate next square is in fact the finish square; if so, it can return True to indicate that it has reached the goal! If it isn’t the goal square, it should recurse by calling searchMazeRecurse() with the current candidate pushed onto path_so_far. If that recursion fails, it should pop the failed candidate off the path and try the next side. (Note the use of push and pop—hint, hint!)
Reminder of Documentation

Don’t forget your file and function headers and comments, and good formatting standards!
Submitting your work

When you've finished your homework, use the submit command to submit the files for this project:
submit cs201 PROJ2 proj2.py
Don't forget to watch for the confirmation that submit worked correctly. Specifically, the confirmation will say:

Submitting proj2.py...OK

Sample Output
	linux3[17]% cat sample_maze.txt

3 4
1 1 1 1
0 1 1 1
0 1 0 1
1 0 0 1
0 0 1 1

0 1 0 1

0 1 0 1
1 1 0 0

0 1 1 0

0 1 0 1

0 1 0 1

1 1 0 1

linux3[18]% python proj2.py sample_maze.txt 0 1 2 3
This program will solve mazes using a recursive search.
Running maze search...

Results: found the following solution path:
(0, 1)

(0, 2)

(0, 3)

(1, 3)

(1, 2)

(1, 1)

(1, 0)

(2, 0)

(2, 1)

(2, 2)

(2, 3)
linux3[18]% python proj2.py sample_maze.txt 0 0 2 3

This program will solve mazes using a recursive search.

Running maze search...

Results: no solution found!

linux3[19]%

0,0

0,1

0,2

0,3

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

0,0

0,1

0,2

0,3

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

0,0

0,1

0,2

0,3

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

