Relational & Logical
Operators, if and switch
Statements

Topics

e Relational Operators and Expressions
e The if Statement

e The if-else Statement

e Nesting of if-else Statements

e switch

e Logical Operators and Expressions

e Truth Tables

Relational Operators

< less than

> greater than

<= less than or equal to
>= greater than or equal to
== IS equal to

|= IS not equal to
e Relational expressions evaluate to true or false.

e All of these operators are called binary operators
because they take two expressions as operands.

Practice with Relational
Expressions

vara=1,b=2,c=3;

Expression true/false Expression true/false

a < C a+b>=c
b<=c¢C a+b==
C<=a al=>b

a>Db a+bl=c

b>=c¢C

Arithmetic Expressions: True
or False

e Arithmetic expressions evaluate to numeric
values.

e An arithmetic expression that has a value of
zero Is false.

e An arithmetic expression that has a value
other than zero Is true.

Practice with Arithmetic
Expressions

var a=1,b=2,c=3;

var x =3.33,y =6.66;

EXxpression Numeric Value True/False
a+b

b-2*a

-a

< < O O
N X QO O

Review: Structured
Programming

e All programs can be written in terms of only
three control structures

The sequence structure

Unless otherwise directed, the statements are
executed in the order in which they are written.

The selection structure
Used to choose among alternative courses of action.

The repetition structure

Allows an action to be repeated while some condition
remains true.

Selection: the if statement

1f(condition)

{
statement (s) // body of if statement

e The braces are not required if the body contains only
a single statement. However, they are a good idea
and are required by the 104 C Coding Standards.

Examples

Alert Screenshot

€3 if Example - Mozilla Firefox

Fle Edit Aiew History Bookmarks Took Help
The page at http:/fuserpages.umbc.edu says: |§|
fi‘] G0 votel
K,
Daone /]

10

Good Programming Practice

e Always place braces around the body of an if
statement.

e Advantages:
Easier to read

Will not forget to add the braces if you go back
and add a second statement to the body

Less likely to make a semantic error

e Indent the body of the if statement 2 to 3
spaces -- be consistent!

11

Selection: the if-else
statement

i1f(condition)

{

statement (s) /* the if clause */
}
else
{

statement (s) /* the else clause */

}
e Note that there is no condition for the else.

12

Example

Another Example 33

Good Programming Practice

e Always place braces around the bodies of the
If and else clauses of an if-else statement.

e Advantages:
Easier to read

Will not forget to add the braces if you go back
and add a second statement to the clause

Less likely to make a semantic error

e Indent the bodies of the if and else clauses 2
to 3 spaces -- be consistent!

15

Nesting of if-else Statements

if (conditionl)

{

statement (s)

}

else if (condition2)

{

statement (s)

/* more else if clauses may be here */

else

{

statement (s) /* the default case */

Another Example 33

Gotcha! = versus ==

Gotcha!

The statement if (a = 1) Is syntactically correct,
so no error message will be produced. However, a
semantic (logic) error will occur.

An assignment expression has a value -- the value
being assigned. In this case the value being assigned
IS 1, which is true.

If the value being assigned was 0, then the expression
would evaluate to 0, which is false.

This is a VERY common error. So, if your if-else
structure always executes the same, look for this
typographical error.

Versus ==

19

Multiple Selection with if

(continued)

if (day ==0) {

alert ("Sunday") ; if (day == 4) {
| alert ("Thursday") ;
if (day == 1) { }

; " . if (day == 5) {

\ alert ("Monday") ; alert ("Friday") ;
. }
if (day == 2) { if (day == 6) {

alert ("Tuesday") ; alert ("Saturday") ;
) }
if (day == 3) { if (day < 0) || (day > 6)) {

alert ("Wednesday") ; alert("Error - invalid day.") ;

} }

20

Multiple Selection with if-else

if (day ==0) {
alert ("Sunday") ;
}elseif (day ==1) { P :
alort ("Monday") This if-else structure is more
} else if (day == 2) { efficient than the corresponding
alert ("Tuesday") ; if structure. Why?
} else if (day == 3) {
alert ("Wednesday") ;
} else if (day == 4) {
alert ("Thursday") ;
} else if (day == 5) {
alert ("Friday") ;
} else if (day == 6) {
alert ("Saturday") ;
} else {
alert ("Error - invalid day.") ; o1

}

The switch Multiple-Selection
Structure

switch (expression)
{
case valuel :
statement(s)
break ;
case value?2 :
statement(s)
break ;

default: :
statement(s)
break ;

}

22

switch Example

switch (day)
{

case 0: alert ("Sunday") ;

break ; Is this structure more

case 1: alert ("Monday") ; ..
break ; efficient than the

case 2: alert ("Tuesday") ;

break ; equivalent nested if-else
case 3: alert ("Wednesday") ; Structure?

break ;
case 4: alert ("Thursday") ;
break ;
case 5: alert ("Friday") ;
break ;
case 6: alert ("Saturday") ;
break ;
default: alert ("Error -- invalid day.") ;
break ;

23

switch Statement Details

e [he last statement of each case in the switch
should almost always be a break.

e [he break causes program control to jump to
the closing brace of the switch structure.

e Without the break, the code flows into the
next case. This is almost never what you
want.

e A switch statement will work without a default
case, but always consider using one.

24

Good Programming Practices

e Include a default case to catch invalid data.

e Inform the user of the type of error that has
occurred (e.g., "Error - invalid day.").

e If appropriate, display the invalid value.

e If appropriate, terminate program execution
(discussed in CMSC 201).

25

Why Use a switch Statement?

e A switch statement can be more efficient than
an if-else.

e A switch statement may also be easier to
read.

e Also, it IS easier to add new cases to a switch
statement than to a nested if-else structure.

26

Logical Operators

e So far we have seen only simple conditions.
if (count>10) ...

e Sometimes we need to test multiple conditions in order to make a
decision.

e Logical operators are used for combining simple conditions to
make complex conditions.

&& ISAND if (x > 5 && y < 6)
| | s OR if (z == || x > 10)

! IS NOT 4if (! (bob > 42))

27

Example Use of &&

if(age <1 && gender == "f")

{
alert ("You have a baby girl!"),;

28

Truth Table for &&
Expression; Expression, Expression; && Expression,
0 0 0
0 nonzero 0
nonzero 0 0
nonzero nonzero 1

Exp, && Exp, && ... && Exp, will evaluate to 1 (true)
only if ALL subconditions are true.

29

Example Use of ||

if(grade == "D II grade - HFH)
{

alert ("See you next semester!");

30

Truth Table for ||
Expression; Expression, Expression, || Expression,
0 0 0
0 nonzero 1
nonzero 0 1
nonzero nonzero 1

Exp, && Exp, && ... && Exp,, will evaluate to 1
(true) if only ONE subcondition is true.

31

Example Use of !

if (! (age >= 18)) /*same as (age < 18)*/
{

alert ("Sorry, you can’t vote.");

}

else

{

alert ("You can vote.");

32

Truth Table for !

EXxpression | EXpression

0 1

nonzero 0

33

Operator Precedence and

Associativity

Precedence

()
I %
+ (addition) - (subtraction)

< <= > >=

&&
|

Associativity

left to right/inside-out
left to right
left to right
left to right
left to right
left to right
left to right
right to left

34

Some Practice Expressions

vara=1,b=0,c=7;

Expression

a

b

a+b

a&&b

allb

lc

llc

a&&!b
a<b&&b<c
a>b&&b<c
a>=Dbllb>c

True/False

35

More Practice

e Given
vara=3,b=7,c=21;

evaluate each expression as true or false.

1.¢c / b ==
2.C%b<=a%b
3.b+c/al=c-a

4. (b<c)&& (c==7)
5.(c+1-b==0)]| (b=5)

36

